On the analysis of a coupled kinetic-fluid model with local alignment forces

被引:53
|
作者
Carrillo, Jose A. [1 ]
Choi, Young-Pil [1 ]
Karper, Trygve K. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
Kinetic-fluid coupled equations; Asymptotic behavior; Flocking; Hydrodynamical limit; NAVIER-STOKES EQUATIONS; HYDRODYNAMIC LIMIT; FLOCKING DYNAMICS; GLOBAL EXISTENCE; ASYMPTOTIC ANALYSIS; PARTICLES REGIME; WEAK SOLUTIONS; VLASOV; SYSTEM; EQUILIBRIUM;
D O I
10.1016/j.anihpc.2014.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies global existence, hydrodynamic limit, and large-time behavior of weak solutions to a kinetic flocking model coupled to the incompressible Navier-Stokes equations. The model describes the motion of particles immersed in a Navier-Stokes fluid interacting through local alignment. We first prove the existence of weak solutions using energy and L-P estimates together with the velocity averaging lemma. We also rigorously establish a hydrodynamic limit corresponding to strong noise and local alignment. In this limit, the dynamics can be totally described by a coupled compressible Euler incompressible Navier-Stokes system. The proof is via relative entropy techniques. Finally, we show a conditional result on the large-time behavior of classical solutions. Specifically, if the mass-density satisfies a uniform in time integrability estimate, then particles align with the fluid velocity exponentially fast without any further assumption on the viscosity of the fluid. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:273 / 307
页数:35
相关论文
共 50 条
  • [41] Collisionless kinetic-fluid simulation of zonal flows in non-circular tokamaks
    Yamagishi, Osamu
    Sugama, Hideo
    PHYSICS OF PLASMAS, 2012, 19 (09)
  • [42] Editorial: Adaptive Kinetic-Fluid Models for Plasma Simulations on Modern Computer Systems
    Kolobov, Vladimir
    Deluzet, Fabrice
    FRONTIERS IN PHYSICS, 2019, 7 (May)
  • [43] A stochastic asymptotic-preserving scheme for a kinetic-fluid model for disperse two-phase flows with uncertainty
    Jin, Shi
    Shu, Ruiwen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 : 905 - 924
  • [44] A Cartesian-diffusion Langevin method for hybrid kinetic-fluid Coulomb in simulations
    Higginson, Drew P.
    Link, Anthony J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 457
  • [45] Kinetic-Fluid Coupling Time-Dependent Simulations Of ITER During ELMs
    Vasileska, Ivona
    Bonnin, Xavier
    Kos, Leon
    30TH INTERNATIONAL CONFERENCE NUCLEAR ENERGY FOR NEW EUROPE (NENE 2021), 2021,
  • [46] Multi-species kinetic-fluid coupling for high-energy density simulations
    Chuna, Thomas
    Sagert, Irina
    Murillo, Michael S.
    Haack, Jeffrey R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 505
  • [47] Analysis of tensiograms of cerebrospinal fluid with a kinetic model
    Gerasimov, IG
    Zaitsev, IA
    Kotel'nitskii, MN
    Fainerman, VB
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2004, 137 (05) : 525 - 527
  • [48] Analysis of Tensiograms of Cerebrospinal Fluid with a Kinetic Model
    I. G. Gerasimov
    I. A. Zaitsev
    M. N. Kotel'nitskii
    V. B. Fainerman
    Bulletin of Experimental Biology and Medicine, 2004, 137 : 525 - 527
  • [49] Asymptotic-preserving schemes for kinetic-fluid modeling of disperse two- phase flows with variable fluid density
    Goudon, Thierry
    Jin, Shi
    Liu, Jian-Guo
    Yan, Bokai
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (02) : 81 - 102
  • [50] A 3D kinetic-fluid numerical code for stationary equilibrium states in magnetized plasmas
    De Bartolo, R.
    Greco, A.
    Veltri, P.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (09) : 647 - 664