On the analysis of a coupled kinetic-fluid model with local alignment forces

被引:53
|
作者
Carrillo, Jose A. [1 ]
Choi, Young-Pil [1 ]
Karper, Trygve K. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
Kinetic-fluid coupled equations; Asymptotic behavior; Flocking; Hydrodynamical limit; NAVIER-STOKES EQUATIONS; HYDRODYNAMIC LIMIT; FLOCKING DYNAMICS; GLOBAL EXISTENCE; ASYMPTOTIC ANALYSIS; PARTICLES REGIME; WEAK SOLUTIONS; VLASOV; SYSTEM; EQUILIBRIUM;
D O I
10.1016/j.anihpc.2014.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies global existence, hydrodynamic limit, and large-time behavior of weak solutions to a kinetic flocking model coupled to the incompressible Navier-Stokes equations. The model describes the motion of particles immersed in a Navier-Stokes fluid interacting through local alignment. We first prove the existence of weak solutions using energy and L-P estimates together with the velocity averaging lemma. We also rigorously establish a hydrodynamic limit corresponding to strong noise and local alignment. In this limit, the dynamics can be totally described by a coupled compressible Euler incompressible Navier-Stokes system. The proof is via relative entropy techniques. Finally, we show a conditional result on the large-time behavior of classical solutions. Specifically, if the mass-density satisfies a uniform in time integrability estimate, then particles align with the fluid velocity exponentially fast without any further assumption on the viscosity of the fluid. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:273 / 307
页数:35
相关论文
共 50 条
  • [1] GLOBAL WEAK SOLUTIONS FOR A KINETIC-FLUID MODEL WITH LOCAL ALIGNMENT FORCE IN A BOUNDED DOMAIN
    LI, Fucai
    LI, Yue
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (10) : 3567 - 3588
  • [2] A kinetic-fluid model
    Cheng, CZ
    Johnson, JR
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A1) : 413 - 427
  • [3] Dissipative structure of the coupled kinetic-fluid models
    Duan, Renjun
    Kawashima, Shuichi
    Ueda, Yoshihiro
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 327 - 335
  • [4] A BGK KINETIC MODEL WITH LOCAL VELOCITY ALIGNMENT FORCES
    Choi, Young-Pil
    Yun, Seok-Bae
    NETWORKS AND HETEROGENEOUS MEDIA, 2020, 15 (03) : 389 - 404
  • [5] Collisionless kinetic-fluid model of zonal flows in toroidal plasmas
    Sugama, H.
    Watanabe, T. -H.
    Horton, W.
    PHYSICS OF PLASMAS, 2007, 14 (02)
  • [6] A general hybrid kinetic-fluid model for collisionless magnetic reconnection
    Martinell, Julio J.
    Plasma and Fusion Science, 2006, 875 : 485 - 488
  • [7] On the global solvability of the coupled kinetic-fluid system for flocking with large initial data
    Ha, Seung-Yeal
    Huang, Bingkang
    Xiao, Qinghua
    Zhang, Xiongtao
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (01): : 1 - 60
  • [8] CHEMICAL KINETIC-FLUID DYNAMIC INTERACTIONS IN DETONATIONS
    ORAN, E
    ACS SYMPOSIUM SERIES, 1984, 249 : 151 - 173
  • [9] A hybrid kinetic-fluid model for solving the Vlasov-BGK equation
    Crouseilles, N
    Degond, P
    Lemou, M
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (02) : 572 - 601
  • [10] A multiscale kinetic-fluid solver with dynamic localization of kinetic effects
    Degond, Pierre
    Dimarco, Giacomo
    Mieussens, Luc
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (13) : 4907 - 4933