High-Precision Monte Carlo Simulation of the Ising Models on the Penrose Lattice and the Dual Penrose Lattice

被引:11
|
作者
Komura, Yukihiro [1 ]
Okabe, Yutaka [2 ]
机构
[1] RIKEN, Adv Inst Computat Sci, Kobe, Hyogo 6500047, Japan
[2] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
关键词
SPIN-FLIP ALGORITHM; BOUNDARY-CONDITIONS; CUDA PROGRAMS; XY MODELS; SYSTEMS; POTTS; 2D;
D O I
10.7566/JPSJ.85.044004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Ising models on the Penrose lattice and the dual Penrose lattice by means of the high-precision Monte Carlo simulation. Simulating systems up to the total system size N = 20633239, we estimate the critical temperatures on those lattices with high accuracy. For high-speed calculation, we use the generalized method of the single-GPU-based computation for the Swendsen-Wang multi-cluster algorithm of Monte Carlo simulation. As a result, we estimate the critical temperature on the Penrose lattice as T-c/J = 2.39781 +/- 0.00005 and that of the dual Penrose lattice as T-c*/J = 2.14987 +/- 0.00005. Moreover, we definitely confirm the duality relation between the critical temperatures on the dual pair of quasilattices with a high degree of accuracy, sinh(2J/T-c) sinh(2J/T-c*) = 1.00000 +/- 0.00004.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Monte Carlo study of the antiferromagnetical Ising model on a centred honeycomb lattice
    Wang Zhou-Fei
    Chen Li
    [J]. CHINESE PHYSICS B, 2009, 18 (05) : 2048 - 2053
  • [42] MONTE-CARLO STUDY OF A TRIANGULAR ISING LATTICE .1.
    WADA, K
    ISHIKAWA, T
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (05) : 1774 - 1780
  • [43] MONTE-CARLO LATTICE SIMULATION OF A SIMPLE ELECTROLYTE
    BRENDER, C
    LAX, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (04): : 2659 - 2660
  • [44] Lattice Monte Carlo simulation with a renormalized potential in Si
    Sahara, R
    Mizuseki, H
    Ohno, K
    Kubo, H
    Kawazoe, Y
    [J]. JOURNAL OF CRYSTAL GROWTH, 2001, 229 (01) : 610 - 614
  • [45] Monte Carlo simulation of SAT in three dimensional lattice
    Ding, EY
    Huang, Y
    Zhao, DL
    [J]. ACTA PHYSICO-CHIMICA SINICA, 1999, 15 (09) : 819 - 823
  • [46] Kinetic lattice Monte Carlo simulation of viscoelastic subdiffusion
    Fritsch, Christian C.
    Langowski, Joerg
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (06):
  • [47] Monte Carlo simulation of lattice systems with RKKY interaction
    Nefedev, K. V.
    Belokon, V. I.
    Kapitan, V. Yu
    Dyachenko, O. I.
    [J]. 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [48] MONTE-CARLO SIMULATION OF LATTICE SKYRME MODEL
    SALY, R
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1985, 36 (04) : 417 - 422
  • [49] Atomistic annealing simulation: Kinetic lattice Monte Carlo
    Yu, M
    Huang, R
    Zhang, X
    Fujitani, H
    Horsfield, AP
    [J]. SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2001, : 909 - 912
  • [50] Monte Carlo simulation of kinesin movement with a lattice model
    Wang, H
    Dou, SX
    Wang, PY
    [J]. CHINESE PHYSICS LETTERS, 2005, 22 (11) : 2980 - 2982