Autonomous Inertia-Sharing Control of Multi-Terminal VSC-HVDC Grids

被引:0
|
作者
Zhang, W. [1 ]
Rouzbehi, K. [1 ]
Candela, J. I. [1 ]
Luna, A. [1 ]
Gharehpetian, G. B. [2 ]
Rodriguez, P. [1 ,3 ]
机构
[1] Tech Univ Catalonia, Barcelona, Spain
[2] Amirkabir Univ Technol, Tehran, Iran
[3] Abengoa, Seville, Spain
关键词
Inertia sharing; Multi-terminal HVDC grids; Unified reference controller; Voltage source converters;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Multi-terminal high-voltage dc (HVDC) grids are expected to experience a continuous expansion in the near future, and have appeared as competitive strategies in transmitting offshore wind and interconnecting multiple ac areas. This paper proposes the inertia sharing concept for the operation of multi-terminal HVDC (MTDC) grids, which can be achieved by the proposed Unified Reference Controller. The control objectives of the VSC stations are no longer limited to the stabilization of dc grid, instead, the requirements in ac side are also met. The interaction dynamics between the ac and dc grid is analyzed for illustrating the proposed concept. In addition, the VSC stations can work in different operation modes based on the unified control architecture, and further smoothly switch the operation modes for flexible maneuver. Simulation results exhibit good performance of the proposed strategy.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] A General Control System Structure for Multi-terminal VSC-HVDC Systems
    Karatsivos, Evripidis
    Svensson, Jorgen
    Samuelsson, Olof
    2014 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT EUROPE), 2014,
  • [12] Control of a Multi-terminal VSC-HVDC System for Wind Power Delivery
    Eladl, Mohamed Tawfik
    Dessouky, Yasser Gaber
    Zakzouk, Ezz Eldien
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ENERGY, POWER AND ELECTRICAL ENGINEERING, 2016, 56 : 75 - 81
  • [13] Power Flow Algorithms for Multi-Terminal VSC-HVDC With Droop Control
    Wang, Wenyuan
    Barnes, Mike
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (04) : 1721 - 1730
  • [14] Control of multi-terminal VSC-HVDC transmission for offshore wind power
    Liang, Jun
    Gomis-Bellmunt, Oriol
    Ekanayake, Janaka
    Jenkins, Nicholas
    EPE: 2009 13TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, VOLS 1-9, 2009, : 5902 - 5911
  • [15] A review of the protection for the multi-terminal VSC-HVDC grid
    Bin Li
    Jiawei He
    Ye Li
    Botong Li
    Protection and Control of Modern Power Systems, 2019, 4
  • [16] A review of the protection for the multi-terminal VSC-HVDC grid
    Li, Bin
    He, Jiawei
    Li, Ye
    Li, Botong
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2019, 4 (01)
  • [17] Research and application on multi-terminal and DC grids based on VSC-HVDC technology in China
    An, Ting
    Tang, Guangfu
    Wang, Weinan
    HIGH VOLTAGE, 2017, 2 (01): : 1 - 10
  • [18] Coordinated control strategy of multi-terminal VSC-HVDC system considering frequency stability and power sharing
    Liu, Yingpei
    Xie, Sai
    Liang, Haiping
    Cui, Hanyang
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2019, 13 (22) : 5188 - 5196
  • [19] Adaptive Droop Based Power Sharing Control Algorithm for Offshore Multi-terminal VSC-HVDC Transmission
    Abdelwahed, Mohamed A.
    Elsaadany, Ehab
    2015 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2015, : 67 - 72
  • [20] Multi-terminal HVDC grids with inertia mimicry capability
    Zhang, Weiyi
    Rouzbehi, Kumars
    Luna, Alvaro
    Gharehpetian, Gevork B.
    Rodriguez, Pedro
    IET RENEWABLE POWER GENERATION, 2016, 10 (06) : 752 - 760