Condensate oscillations oscillations in a Penrose tiling lattice

被引:1
|
作者
Akdeniz, Z. [1 ]
Vignolo, P. [2 ]
机构
[1] Piri Reis Univ, Fac Sci & Letters, TR-34940 Istanbul, Turkey
[2] Univ Cote Azur, CNRS, Inst Phys Nice, 1361 Route Lucioles, F-06560 Valbonne, France
关键词
Dynamic properties of condensates; Quantum transport; Quasicrystals; CRITICAL WAVE-FUNCTIONS; QUASI-CRYSTAL; LOCALIZATION; SYMMETRY; SYSTEMS; STATES;
D O I
10.1016/j.physe.2017.04.016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study the dynamics of a Bose-Einstein condensate subject to a particular Penrose tiling lattice. In such a lattice, the potential energy at each site depends on the neighbour sites, accordingly to.the model introduced by Sutherland [16]. The Bose-Einstein wavepacket, initially at rest at the lattice symmetry center, is released. We observe a very complex time-evolution that strongly depends on the symmetry center (two choices are possible), on the potential energy landscape"dispersion, and on the interaction strength. The condensate-width oscillates at different frequencies and we can identify large-frequency reshaping oscillations and low-frequency rescaling oscillations. We discuss in which conditions these oscillations are spatially bounded, denoting a self-trapping dynamics.
引用
收藏
页码:136 / 140
页数:5
相关论文
共 50 条
  • [31] Role of the mean field in Bloch oscillations of a Bose-Einstein condensate in an optical lattice and harmonic trap
    Zhang, R.
    Sapiro, R. E.
    Mhaskar, R. R.
    Raithel, G.
    PHYSICAL REVIEW A, 2008, 78 (05):
  • [32] Damping of condensate oscillations of a trapped Bose gas in a one-dimensional optical lattice at finite temperatures
    Arahata, Emiko
    Nikuni, Tetsuro
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [33] CONDUCTANCE FLUCTUATION OF A PENROSE TILING
    TSUNETSUGU, H
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1990, 117 : 781 - 784
  • [34] Penrose tiling in Helsinki and Tokyo
    Kuo, KH
    MATHEMATICAL INTELLIGENCER, 1996, 18 (04): : 65 - 65
  • [35] PENROSE TILING IN NORTHFIELD, MINNESOTA
    LOE, BJ
    MATHEMATICAL INTELLIGENCER, 1995, 17 (02): : 54 - 54
  • [36] Diffusive Limits on the Penrose Tiling
    A. Telcs
    Journal of Statistical Physics, 2010, 141 : 661 - 668
  • [37] Penrose tiling at Miami University
    Kullman, DE
    MATHEMATICAL INTELLIGENCER, 1996, 18 (04): : 66 - 66
  • [38] Energy landscape in a Penrose tiling
    Vignolo, Patrizia
    Bellec, Matthieu
    Boehm, Julian
    Camara, Abdoulaye
    Gambaudo, Jean-Marc
    Kuhl, Ulrich
    Mortessagne, Fabrice
    PHYSICAL REVIEW B, 2016, 93 (07)
  • [39] On the fractal nature of Penrose tiling
    Ramachandrarao, P
    Sinha, A
    Sanyal, D
    CURRENT SCIENCE, 2000, 79 (03): : 364 - 366
  • [40] Resonances and chaos in the collective oscillations of a trapped Bose condensate
    Salasnich, L
    PHYSICS LETTERS A, 2000, 266 (2-3) : 187 - 192