Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells

被引:55
|
作者
Hannouche, D.
Terai, H.
Fuchs, J. R.
Terada, S.
Zand, S.
Nasseri, B. A.
Petite, H.
Sedel, L.
Vacanti, J. P.
机构
[1] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Lab Tissue Engn & Organ Fabricat, Boston, MA 02114 USA
[2] Univ Paris, Fac Med Lariboisiere St Louis, Lab Rech Orthoped, F-75252 Paris, France
来源
TISSUE ENGINEERING | 2007年 / 13卷 / 01期
关键词
D O I
10.1089/ten.2006.0067
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Fabrication of implantable cartilaginous structures that could be secured in the joint defect could provide an alternative therapeutic approach to prosthetic joint replacement. Herein we explored the possibility of using biodegradable hydrogels in combination with a polyglycolic acid (PGA) scaffold to provide an environment propitious to mesenchymal stem cells (MSCs) chondrogenic differentiation. We examined the influence of type I collagen gel and alginate combined with PGA meshes on the extracellular matrix composition of tissue-engineered transplants. MSCs were isolated from young rabbits, expanded in monolayers, suspended in each hydrogel, and loaded on PGA scaffolds. All constructs (n = 48) were cultured in serum-free medium containing transforming growth factor beta-1, under dynamic conditions in specially designed bioreactors for 3-6 weeks. All cell-polymer constructs had a white, shiny aspect, and retained their initial size and shape over the culture period. Their thickness increased substantially over time, and no shrinkage was observed. All specimens developed a hyalin-like extracellular matrix containing glycosaminoglycans (GAGS) and type II collagen, but significant differences were observed among the three different groups. In PGA/MSCs and collagen-PGA/MSCs constructs, the cell growth phase and the chondrogenic differentiation phase of MSCs occurred during the first 3 weeks. In alginate-PGA/MSCs constructs, cells remained round in the hydrogel and cartilage extracellular matrix deposition was delayed. However, at 6 weeks, alginate-PGA/MSCs constructs exhibited higher contents of GAGS and lower contents of type I collagen. These results suggest that the implied time for the transplantation of in vitro engineered constructs depends, among other factors, on the nature of the scaffold envisioned. In this study, we demonstrated that the use of a composite hydrogel-PGA scaffold supported the in vitro growth of implantable cartilaginous structures cultured in a bioreactor system.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 50 条
  • [21] Bone marrow-derived mesenchymal stem cells in repair of the injured lung
    Rojas, M
    Xu, JG
    Woods, CR
    Mora, AL
    Spears, W
    Roman, J
    Brigham, KL
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2005, 33 (02) : 145 - 152
  • [22] Expansion of bone marrow-derived mesenchymal stem cells for clinical application
    Roelofs, H
    Egeler, RM
    Fibbe, WE
    BONE MARROW TRANSPLANTATION, 2004, 33 : S169 - S170
  • [24] Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke
    Dharmasaroja, Permphan
    JOURNAL OF CLINICAL NEUROSCIENCE, 2009, 16 (01) : 12 - 20
  • [25] Bone marrow-derived mesenchymal stem cells for the treatment of heart failure
    Narita, Takuya
    Suzuki, Ken
    HEART FAILURE REVIEWS, 2015, 20 (01) : 53 - 68
  • [26] Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas
    Nakamizo, A
    Marini, F
    Amano, T
    Khan, A
    Studeny, M
    Gumin, J
    Chen, J
    Hentschel, S
    Vecil, G
    Dembinski, J
    Andreeff, M
    Lang, FF
    CANCER RESEARCH, 2005, 65 (08) : 3307 - 3318
  • [27] Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells
    Tropel, Philippe
    Platet, Nadine
    Platel, Jean-Claude
    Noel, Daniele
    Albrieux, Mireille
    Benabid, Alim-Louis
    Berger, Francois
    STEM CELLS, 2006, 24 (12) : 2868 - 2876
  • [28] Survival of bone marrow-derived mesenchymal stem cells in a xenotransplantation model
    Wang, Yan
    Chen, Xi
    Armstrong, Marilyn Ann
    Li, Gang
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2007, 25 (07) : 926 - 932
  • [29] Differentiation into neurons of rat bone marrow-derived mesenchymal stem cells
    Guan, Ming
    Xu, Yaping
    Wang, Wei
    Lin, Shan
    EUROPEAN CYTOKINE NETWORK, 2014, 25 (03) : 58 - 63
  • [30] Mesenchymal stem cells immunosuppressive properties: is it specific to bone marrow-derived cells?
    Christian Jorgensen
    Stem Cell Research & Therapy, 1