COMMON HYPERCYCLIC FUNCTIONS FOR MULTIPLES OF CONVOLUTION AND NON-CONVOLUTION OPERATORS

被引:8
|
作者
Bernal-Gonzalez, Luis [1 ]
机构
[1] Univ Seville, Dept Anal Matemat, Fac Matemat, E-41080 Seville, Spain
关键词
Hypercyclic operators; common hypercyclic vectors; entire functions; linear differential operators; Borel transform; VECTORS; GENERICITY; SUBSPACES; FAMILIES; PATH;
D O I
10.1090/S0002-9939-09-09943-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a residual set of entire functions, all of whose members are hypercyclic for every non-zero scalar multiple of T, where T is the differential operator associated to an entire function of order less than 1/2. The same result holds if T is a finite-order linear differential operator with non-constant coefficients.
引用
收藏
页码:3787 / 3795
页数:9
相关论文
共 50 条
  • [21] Algebrable sets of hypercyclic vectors for convolution operators
    Bes, Juan
    Papathanasiou, Dimitris
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (01) : 91 - 119
  • [22] Hypercyclic algebras for convolution operators of unimodular constant term
    Bes, J.
    Ernst, R.
    Prieto, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (01)
  • [23] MULTIPLES OF HYPERCYCLIC OPERATORS
    Badea, Catalin
    Grivaux, Sophie
    Muller, Vladimir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (04) : 1397 - 1403
  • [24] Performance Analysis of CNN Inference/Training with Convolution and Non-Convolution Operations on ASIC Accelerators
    Esmaeilzadeh, Hadi
    Ghodrati, Soroush
    Kahng, Andrew B.
    Kinzer, Sean
    Manasi, Susmita Dey
    Sapatnekar, Sachin S.
    Wang, Zhiang
    ACM Transactions on Design Automation of Electronic Systems, 2024, 30 (01)
  • [25] Hypercyclic and chaotic convolution operators associated with the Dunkl operator on C
    Betancor, JJ
    Sifi, A
    Trimèche, K
    ACTA MATHEMATICA HUNGARICA, 2005, 106 (1-2) : 101 - 116
  • [26] Hypercyclic and chaotic convolution operators on Chebli-Trimeche hypergroups
    Betancor, JJ
    Betancor, JD
    Méndez, JMR
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) : 1207 - 1237
  • [27] NON-LINEAR VOLTERRA EQUATION OF NON-CONVOLUTION TYPE
    SMITH, MC
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 32 (02) : 294 - 309
  • [28] Random walks with non-convolution equivalent increments and their applications
    Wang, Yuebao
    Wang, Kaiyong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (01) : 88 - 105
  • [29] Convolution operators on weighted spaces of continuous functions and supremal convolution
    Kleiner, T.
    Hilfer, R.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (04) : 1547 - 1569
  • [30] Convolution operators on weighted spaces of continuous functions and supremal convolution
    T. Kleiner
    R. Hilfer
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 1547 - 1569