Integrative molecular concept modeling of prostate cancer progression

被引:712
|
作者
Tomlins, Scott A.
Mehra, Rohit
Rhodes, Daniel R.
Cao, Xuhong
Wang, Lei
Dhanasekaran, Saravana M.
Kalyana-Sundaram, Shanker
Wei, John T.
Rubin, Mark A.
Pienta, Kenneth J.
Shah, Rajal B.
Chinnaiyan, Arul M. [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Med, Ctr Comprehens Canc, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Sch Med, Bioinformat Program, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Sch Med, Dept Urol, Ann Arbor, MI 48109 USA
[5] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[6] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[7] Univ Michigan, Sch Med, Dept Internal Med, Ann Arbor, MI 48109 USA
关键词
D O I
10.1038/ng1935
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Despite efforts to profile prostate cancer, the genetic alterations and biological processes that correlate with the observed histological progression are unclear. Using laser-capture microdissection to isolate 101 cell populations, we have profiled prostate cancer progression from benign epithelium to metastatic disease. By analyzing expression signatures in the context of over 14,000 'molecular concepts', or sets of biologically connected genes, we generated an integrative model of progression. Molecular concepts that demarcate critical transitions in progression include protein biosynthesis, E26 transformation-specific (ETS) family transcriptional targets, androgen signaling and cell proliferation. Of note, relative to low-grade prostate cancer (Gleason pattern 3), high-grade cancer (Gleason pattern 4) shows an attenuated androgen signaling signature, similar to metastatic prostate cancer, which may reflect dedifferentiation and explain the clinical association of grade with prognosis. Taken together, these data show that analyzing gene expression signatures in the context of a compendium of molecular concepts is useful in understanding cancer biology.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 50 条
  • [22] Integrative analysis of functional long noncoding RNAs during prostate cancer progression
    Fei, Teng
    Chen, Yiwen
    Du, Zhou
    Liu, Xiaole Shirley
    Brown, Myles
    [J]. CANCER RESEARCH, 2014, 74 (19)
  • [23] Molecular mechanisms of neuroendocrine differentiation in prostate cancer progression
    Yuchen Xie
    Songyi Ning
    Jianpeng Hu
    [J]. Journal of Cancer Research and Clinical Oncology, 2022, 148 : 1813 - 1823
  • [24] Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression
    Varambally, S
    Yu, JJ
    Laxman, B
    Rhodes, DR
    Mehra, R
    Tomlins, SA
    Shah, RB
    Chandran, U
    Monzon, FA
    Becich, MJ
    Wei, JT
    Pienta, KJ
    Ghosh, D
    Rubin, MA
    Chinnaiyan, AM
    [J]. CANCER CELL, 2005, 8 (05) : 393 - 406
  • [25] Molecular Classification of Prostate Cancer Progression: Foundation for Marker-Driven Treatment of Prostate Cancer
    Logothetis, Christopher J.
    Gallick, Gary E.
    Maity, Sankar N.
    Kim, Jeri
    Aparicio, Ana
    Efstathiou, Eleni
    Lin, Sue-Hwa
    [J]. CANCER DISCOVERY, 2013, 3 (08) : 849 - 861
  • [26] Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression
    Yin Li
    Wanwipa Vongsangnak
    Luonan Chen
    Bairong Shen
    [J]. BMC Medical Genomics, 7
  • [27] Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression
    Li, Yin
    Vongsangnak, Wanwipa
    Chen, Luonan
    Shen, Bairong
    [J]. BMC MEDICAL GENOMICS, 2014, 7
  • [28] An Integrative Approach to Prostate Cancer
    Abrams, Donald I.
    [J]. JOURNAL OF ALTERNATIVE AND COMPLEMENTARY MEDICINE, 2018, 24 (9-10) : 872 - 880
  • [29] Molecular prediction of progression in patients with conservatively managed prostate cancer
    McIntyre, IG
    Clarke, RB
    Anderson, E
    Clarke, NW
    George, NJR
    [J]. UROLOGY, 2001, 58 (05) : 762 - 766
  • [30] Molecular sampling of prostate cancer: a dilemma for predicting disease progression
    Andrea Sboner
    Francesca Demichelis
    Stefano Calza
    Yudi Pawitan
    Sunita R Setlur
    Yujin Hoshida
    Sven Perner
    Hans-Olov Adami
    Katja Fall
    Lorelei A Mucci
    Philip W Kantoff
    Meir Stampfer
    Swen-Olof Andersson
    Eberhard Varenhorst
    Jan-Erik Johansson
    Mark B Gerstein
    Todd R Golub
    Mark A Rubin
    Ove Andrén
    [J]. BMC Medical Genomics, 3