Wideband OPLL photonic integrated circuit enabling ultrahigh dynamic range PM RF/photonic ink

被引:15
|
作者
Li, Yifei [1 ]
Xu, Longtao [1 ]
Jin, Shilei [1 ]
Rodriguez, Jeffrey [1 ]
Sun, Tianyu [1 ,2 ]
Herczfeld, Peter [3 ]
机构
[1] Univ Massachusetts, Dept Elect & Comp Engn, Dartmouth, MA 02747 USA
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China
[3] Drexel Univ, Dept Elect & Comp Engn, Philadelphia, PA 10104 USA
来源
OPTICA | 2019年 / 6卷 / 08期
关键词
MICROWAVE; DISTORTION; LINKS;
D O I
10.1364/OPTICA.6.001078
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The RF/photonic link is the basic element of microwave photonics. Previous RF photonic links often rely on optical intensity modulation. The inherent modulation nonlinearity leads to inadequate spurious free dynamic range (SFDR) for many sought-after microwave photonic applications in radar. A new phase-modulated (PM) link with an optical phase-locked loop (OPLL) demodulator could afford a promising solution for the SFDR. However, the efficacy of the PM link approach remained unsubstantiated as previous OPLL implementations had too restricted of a bandwidth for realistic applications. Here, we present a new OPLL photonic integrated circuit (PIC) chip that offered quadrupled bandwidth enhancement over the state of the art. The OPLL PIC represents the first OPLL linear optical phase demodulator with sufficient bandwidth for realistic microwave photonic applications. With help of the OPLL PIC, a PM RF/photonic link demonstrated a record-breaking SFDR of similar to 129.3 dB . Hz(2/3) and a 3 dB SFDR bandwidth of similar to 1 GHz. The combined SFDR and bandwidth performance amounts to around 1 order of magnitude improvement over the prior state of the art. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1078 / 1083
页数:6
相关论文
共 45 条
  • [41] Long-Range Static and Dynamic Thermal Crosstalk in Silicon-Nitride (SiNx) Photonic Integrated Circuits
    Yegnanarayanan, Siva S.
    Maxson, Ryan T.
    Sorace-Agaskar, Cheryl
    Kharas, Dave
    Juodawlkis, Paul W.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [42] Dynamic Range Improvement for an Analog Photonic Link Using an Integrated Electro-Optic Dual-Polarization Modulator
    Zhu, Zihang
    Zhao, Shanghong
    Li, Xuan
    Qu, Kun
    Lin, Tao
    Lin, Baoqin
    IEEE PHOTONICS JOURNAL, 2016, 8 (02):
  • [43] Multi-Channel Coherent PM-QPSK InP Transmitter Photonic Integrated Circuit (PIC) Operating At 112 Gb/s Per Wavelength
    Evans, P.
    Fisher, M.
    Malendevich, R.
    James, A.
    Studenkov, P.
    Goldfarb, G.
    Vallaitis, T.
    Kato, M.
    Samra, P.
    Corzine, S.
    Strzelecka, E.
    Salvatore, R.
    Sedgwick, F.
    Kuntz, M.
    Lal, V.
    Lambert, D.
    Dentai, A.
    Pavinski, D.
    Zhang, J.
    Behnia, B.
    Bostak, J.
    Dominic, V.
    Nilsson, A.
    Taylor, B.
    Rahn, J.
    Sanders, S.
    Sun, H.
    Wu, K. -T.
    Pleumeekers, J.
    Muthiah, R.
    Missey, M.
    Schneider, R.
    Stewart, J.
    Reffle, M.
    Butrie, T.
    Nagarajan, R.
    Joyner, C.
    Ziari, M.
    Kish, F.
    Welch, D.
    2011 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION (OFC/NFOEC) AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, 2011,
  • [44] 2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit
    Wang, Ruijun
    Sprengel, Stephan
    Boehm, Gerhard
    Muneeb, Muhammad
    Baets, Roel
    Amann, Markus-Christian
    Roelkens, Gunther
    OPTICS EXPRESS, 2016, 24 (18): : 21081 - 21089
  • [45] A 40-Gb/s, 900-fJ/bit Dual-Channel Receiver in a 45-nm Monolithic RF/Photonic Integrated Circuit Process
    Movaghar, Ghazal
    Arrunategui, Viviana
    Chansky, Evan
    Maharry, Aaron
    Schow, Clint L.
    Buckwalter, James F.
    IEEE SOLID-STATE CIRCUITS LETTERS, 2022, 5 : 313 - 316