Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging

被引:76
|
作者
Schmidt, Paul [1 ,2 ]
Pongratz, Viola [1 ,2 ]
Kuester, Pascal [3 ,4 ]
Meier, Dominik [3 ]
Wuerfel, Jens [3 ,4 ]
Lukas, Carsten [5 ]
Bellenberg, Barbara [5 ]
Zipp, Frauke [6 ,7 ]
Groppa, Sergiu [6 ,7 ]
Saemann, Philipp G. [8 ]
Weber, Frank [8 ,9 ]
Gaser, Christian [10 ,11 ]
Franke, Thomas [12 ]
Bussas, Matthias [1 ,2 ]
Kirschke, Jan [13 ]
Zimmer, Claus [13 ]
Hemmer, Bernhard [1 ,14 ]
Muehlau, Mark [1 ,2 ]
机构
[1] Tech Univ Munich, Neurol, Ismaninger Str 22, D-81541 Munich, Germany
[2] Tech Univ Munich, Neuroimaging Ctr, Ismaninger Str 22, D-81541 Munich, Germany
[3] MIAC AG, Med Image Anal Ctr, Mittlere Str 83, CH-4031 Basel, Switzerland
[4] Univ Basel, Biomed Engn, Basel, Switzerland
[5] Ruhr Univ Bochum, St Josef Hosp, Diagnost & Intervent Radiol, Gudrunstr 56, D-44791 Bochum, Germany
[6] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Neurol, Langenbeckstr 1, D-55131 Mainz, Germany
[7] Neuroimaging Ctr Focus Program Translat Neurosci, FTN NIC, Langenbeckstr 1, D-55131 Mainz, Germany
[8] Max Planck Inst Psychiat, Kraepelinstr 2-10, D-80804 Munich, Germany
[9] Sana Kliniken Landkreises Cham, Neurol, August Holz Str 1, D-93413 Cham, Germany
[10] Jena Univ Hosp, Dept Psychiat, Jena, Germany
[11] Jena Univ Hosp, Dept Neurol, Jena, Germany
[12] Univ Med Ctr Gottingen, Med Informat, Gottingen, Germany
[13] Tech Univ Munich, Neuroradiol, Ismaninger Str 22, D-81541 Munich, Germany
[14] Munich Cluster Syst Neurol SyNergy, Feodor Lynen Str 17, D-81377 Munich, Germany
关键词
Magnetic resonance imaging; Multiple sclerosis; White matter lesions; Lesion segmentation; BRAIN MRI; SUBTRACTION; ATROPHY; IMPACT; GRAY;
D O I
10.1016/j.nicl.2019.101849
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Longitudinal analysis of white matter lesion changes on serial MRI has become an important parameter to study diseases with white-matter lesions. Here, we build on earlier work on cross-sectional lesion segmentation; we present a fully automatic pipeline for serial analysis of FLAIR-hyperintense white matter lesions. Our algorithm requires three-dimensional gradient echo T1- and FLAIR- weighted images at 3 Tesla as well as available cross-sectional lesion segmentations of both time points. Preprocessing steps include lesion filling and intrasubject registration. For segmentation of lesion changes, initial lesion maps of different time points are fused; herein changes in intensity are analyzed at the voxel level. Significance of lesion change is estimated by comparison with the difference distribution of FLAIR intensities within normal appearing white matter. The method is validated on MRI data of two time points from 40 subjects with multiple sclerosis derived from two different scanners (20 subjects per scanner). Manual segmentation of lesion increases served as gold standard. Across all lesion increases, voxel-wise Dice coefficient (0.7) as well as lesion-wise detection rate (0.8) and false-discovery rate (0.2) indicate good overall performance. Analysis of scans from a repositioning experiment in a single patient with multiple sclerosis did not yield a single false positive lesion. We also introduce the lesion change plot as a descriptive tool for the lesion change of individual patients with regard to both number and volume. An open source implementation of the algorithm is available at http//www.satastical-modeling.de/lst.html.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis
    Schmidt, P.
    Gaser, C.
    Arsic, M.
    Buck, D.
    Foerschler, A.
    Berthele, A.
    Hoshi, M.
    Ilg, R.
    Schmid, V.
    Zimmer, C.
    Hemmer, B.
    Muehlau, M.
    MULTIPLE SCLEROSIS JOURNAL, 2011, 17 : S390 - S390
  • [2] An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis
    Schmidt, Paul
    Gaser, Christian
    Arsic, Milan
    Buck, Dorothea
    Foerschler, Annette
    Berthele, Achim
    Hoshi, Muna
    Ilg, Ruediger
    Schmid, Volker J.
    Zimmer, Claus
    Hemmer, Bernhard
    Muehlau, Mark
    NEUROIMAGE, 2012, 59 (04) : 3774 - 3783
  • [3] The pathogenesis of lesions and normal appearing white matter changes in multiple sclerosis: A serial diffusion magnetic resonance imaging study
    Werring, DJ
    Brassat, D
    Droogan, AG
    Clark, CA
    Symms, MR
    Barker, GJ
    MacManus, DG
    Thompson, AJ
    Miller, DH
    NEUROLOGY, 2000, 54 (07) : A122 - A122
  • [4] Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging
    Garcia-Lorenzo, Daniel
    Francis, Simon
    Narayanan, Sridar
    Arnold, Douglas L.
    Collins, D. Louis
    MEDICAL IMAGE ANALYSIS, 2013, 17 (01) : 1 - 18
  • [5] Stratifying FLAIR-hyperintense white matter lesions in a pilot study of MS, CIS, dementia and concussion using magnetic susceptibility mapping
    Wiggermann, V.
    Kames, C.
    Hsiung, R.
    Metz, L. M.
    Li, D. K. B.
    Traboulsee, A.
    Rauscher, A.
    MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 805 - 806
  • [6] Active multiple sclerosis lesions occur in dirty-appearing white matter as detected by serial magnetic resonance imaging
    Zhao, GJ
    Li, DKB
    Cheng, Y
    Wang, XY
    Paty, DW
    ANNALS OF NEUROLOGY, 1998, 44 (03) : 465 - 465
  • [7] A serial in vivo 7T magnetic resonance phase imaging study of white matter lesions in multiple sclerosis
    Bian, Wei
    Harter, Kristin
    Hammond-Rosenbluth, Kathryn E.
    Lupo, Janine M.
    Xu, Duan
    Kelley, Douglas A. C.
    Vigneron, Daniel B.
    Nelson, Sarah J.
    Pelletier, Daniel
    MULTIPLE SCLEROSIS JOURNAL, 2013, 19 (01) : 69 - 75
  • [8] The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis
    Gelineau-Morel, Rose
    Tomassini, Valentina
    Jenkinson, Mark
    Johansen-Berg, Heidi
    Matthews, Paul M.
    Palace, Jacqueline
    HUMAN BRAIN MAPPING, 2012, 33 (12) : 2802 - 2814
  • [9] Automated quantification of deep grey matter structures and white matter lesions using magnetic resonance imaging in relapsing remission multiple sclerosis
    Rizkallah, Mina
    Hefida, Mohamed
    Khalil, Mohamed
    Dawoud, Rasha Mahmoud
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01):
  • [10] Automated quantification of deep grey matter structures and white matter lesions using magnetic resonance imaging in relapsing remission multiple sclerosis
    Mina Rizkallah
    Mohamed Hefida
    Mohamed Khalil
    Rasha Mahmoud Dawoud
    Egyptian Journal of Radiology and Nuclear Medicine, 52