An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis

被引:913
|
作者
Schmidt, Paul [2 ]
Gaser, Christian [3 ,4 ]
Arsic, Milan
Buck, Dorothea
Foerschler, Annette [5 ]
Berthele, Achim
Hoshi, Muna
Ilg, Ruediger
Schmid, Volker J. [2 ]
Zimmer, Claus [5 ]
Hemmer, Bernhard
Muehlau, Mark [1 ]
机构
[1] Tech Univ Munich, Dept Neurol, Klinikum Rechts Isar, D-81675 Munich, Germany
[2] Univ Munich, Dept Stat, Munich, Germany
[3] Univ Jena, Dept Psychiat, Jena, Germany
[4] Univ Jena, Dept Neurol, Jena, Germany
[5] Tech Univ Munich, Dept Neuroradiol, D-81675 Munich, Germany
关键词
Lesion segmentation; FLAIR; Multiple Sclerosis; Voxel-based morphometry; ATTENUATED INVERSION-RECOVERY; RANDOM-FIELD MODEL; MR-IMAGES; SPIN-ECHO; INTERFERON BETA-1A; MULTICHANNEL MRI; BLACK-HOLES; SEGMENTATION; BRAIN; DISABILITY;
D O I
10.1016/j.neuroimage.2011.11.032
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In Multiple Sclerosis (MS), detection of T2-hyperintense white matter (WM) lesions on magnetic resonance imaging (MRI) has become a crucial criterion for diagnosis and predicting prognosis in early disease. Automated lesion detection is not only desirable with regard to time and cost effectiveness but also constitutes a prerequisite to minimize user bias. Here, we developed and evaluated an algorithm for automated lesion detection requiring a three-dimensional (3D) gradient echo (GRE) T1-weighted and a FLAIR image at 3 Tesla (T). Our tool determines the three tissue classes of gray matter (GM) and WM as well as cerebrospinal fluid (CSF) from the T1-weighted image, and, then, the FLAIR intensity distribution of each tissue class in order to detect outliers, which are interpreted as lesion beliefs. Next, a conservative lesion belief is expanded toward a liberal lesion belief. To this end, neighboring voxels are analyzed and assigned to lesions under certain conditions. This is done iteratively until no further voxels are assigned to lesions. Herein, the likelihood of belonging to WM or GM is weighed against the likelihood of belonging to lesions. We evaluated our algorithm in 53 MS patients with different lesion volumes, in 10 patients with posterior fossa lesions, and 18 control subjects that were all scanned at the same 31 scanner (Achieva, Philips, Netherlands). We found good agreement with lesions determined by manual tracing (R2 values of over 0.93 independent of FLAIR slice thickness up to 6 mm). These results require validation with data from other protocols based on a conventional FLAIR sequence and a 3D GRE T1-weighted sequence. Yet, we believe that our tool allows fast and reliable segmentation of FLAIR-hyperintense lesions, which might simplify the quantification of lesions in basic research and even clinical trials. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3774 / 3783
页数:10
相关论文
共 50 条
  • [1] An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis
    Schmidt, P.
    Gaser, C.
    Arsic, M.
    Buck, D.
    Foerschler, A.
    Berthele, A.
    Hoshi, M.
    Ilg, R.
    Schmid, V.
    Zimmer, C.
    Hemmer, B.
    Muehlau, M.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2011, 17 : S390 - S390
  • [2] Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging
    Schmidt, Paul
    Pongratz, Viola
    Kuester, Pascal
    Meier, Dominik
    Wuerfel, Jens
    Lukas, Carsten
    Bellenberg, Barbara
    Zipp, Frauke
    Groppa, Sergiu
    Saemann, Philipp G.
    Weber, Frank
    Gaser, Christian
    Franke, Thomas
    Bussas, Matthias
    Kirschke, Jan
    Zimmer, Claus
    Hemmer, Bernhard
    Muehlau, Mark
    [J]. NEUROIMAGE-CLINICAL, 2019, 23
  • [3] FLAIR* to visualize veins in white matter lesions: A new tool for the diagnosis of multiple sclerosis?
    T. Campion
    R. J. P. Smith
    D. R. Altmann
    G. C. Brito
    B. P. Turner
    J. Evanson
    I. C. George
    P. Sati
    D. S. Reich
    M. E. Miquel
    K. Schmierer
    [J]. European Radiology, 2017, 27 : 4257 - 4263
  • [4] FLAIR* to visualize veins in white matter lesions: A new tool for the diagnosis of multiple sclerosis?
    Campion, T.
    Smith, R. J. P.
    Altmann, D. R.
    Brito, G. C.
    Turner, B. P.
    Evanson, J.
    George, I. C.
    Sati, P.
    Reich, D. S.
    Miquel, M. E.
    Schmierer, K.
    [J]. EUROPEAN RADIOLOGY, 2017, 27 (10) : 4257 - 4263
  • [5] Stratifying FLAIR-hyperintense white matter lesions in a pilot study of MS, CIS, dementia and concussion using magnetic susceptibility mapping
    Wiggermann, V.
    Kames, C.
    Hsiung, R.
    Metz, L. M.
    Li, D. K. B.
    Traboulsee, A.
    Rauscher, A.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 805 - 806
  • [6] Characterization of myelinated cerebral white matter hyperintense MRI lesions in multiple sclerosis
    Holloman, Jameson
    Trapp, Bruce
    Kim, Jihye
    Singh, Vikas
    Chomyk, Anthony
    Nakamura, Kunio
    Ontaneda, Daniel
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2023, 29 : 1050 - 1050
  • [7] FLAIR-Hyperintense Lesions in Anti-MOG-Associated Encephalitis With Seizures (FLAMES)
    Michaelson, Nara Miriam
    Langan, Donald
    Kaunzner, Ulrike
    [J]. NEUROHOSPITALIST, 2024, 14 (02): : 222 - 223
  • [8] Automated Detection of White Matter and Cortical Lesions in Early Stages of Multiple Sclerosis
    Fartaria, Mario Joao
    Bonnier, Guillaume
    Roche, Alexis
    Kober, Tobias
    Meuli, Reto
    Rotzinger, David
    Frackowiak, Richard
    Schluep, Myriam
    Du Pasquier, Renaud
    Thiran, Jean-Philippe
    Krueger, Gunnar
    Cuadra, Meritxell Bach
    Granziera, Cristina
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (06) : 1445 - 1454
  • [9] Shrinking of T2-hyperintense white matter lesions in early multiple sclerosis
    Biberacher, V.
    Schmidt, P.
    Grahl, S.
    Beer, A.
    Buck, D.
    Berthele, A.
    Hoshi, M. -M.
    Kirschke, J.
    Zimmer, C.
    Hemmer, B.
    Muehlau, M.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 261 - 262
  • [10] The impact of isolated lesions on white-matter fiber tracts in multiple sclerosis patients
    Droby, Amgad
    Fleischer, Vinzenz
    Carnini, Marco
    Zimmermann, Hilga
    Siffrin, Volker
    Gawehn, Joachim
    Erb, Michael
    Hildebrandt, Andreas
    Baier, Bernhard
    Zipp, Frauke
    [J]. NEUROIMAGE-CLINICAL, 2015, 8 : 110 - 116