Neural adaptive synchronization control of chaotic FitzHugh-Nagumo neurons in the external electrical stimulation

被引:0
|
作者
Meng, Zihan [1 ]
Xia, Zijie [1 ]
Yu, Haitao [1 ]
Wang, Jiang [1 ]
Liu, Chen [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
关键词
synchronization; FitzHugh-Nagumo (FHN) neuron; sliding mode control; neural network; 2 COUPLED NEURONS; NONLINEAR-SYSTEMS; NETWORKS; DYNAMICS;
D O I
10.23919/chicc.2019.8865984
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a neural adaptive control strategy for the chaotic synchronization of two electrically coupled FitzHugh-Nagumo (FHN) neurons in the external electrical stimulation. The control scheme integrates the sliding mode control, input-output linearization technique, and neural network approximation. Through input-output linearization, a sliding mode controller is derived firstly to compensate the non linearity of the coupled neuronal system. Considering the nonlinearity of neural system is usually unknown in practical applications, an adaptive sliding mode control law is designed with a radial basis function (RBF) neural network to approximate the unknown system nonlinearity. The neural network parameters are updated according to the Lyapunov approach. It is shown that using the proposed control approach, chaos synchronization between two coupled neurons can be obtained. Simulation results demonstrate the effectiveness of the proposed control schetre.
引用
收藏
页码:2731 / 2736
页数:6
相关论文
共 50 条
  • [31] Experimental study of electrical FitzHugh-Nagumo neurons with modified excitability
    Binczak, Stephane
    Jacquir, Sabir
    Bilbault, Jean-Marie
    Kazantsev, Viktor B.
    Nekorkin, Vladimir I.
    NEURAL NETWORKS, 2006, 19 (05) : 684 - 693
  • [32] The chaotic dynamics and multistability of two coupled Fitzhugh-Nagumo model neurons
    Shim, Yoonsik
    Husbands, Phil
    ADAPTIVE BEHAVIOR, 2018, 26 (04) : 165 - 176
  • [33] Adaptive Control of Synchronization in Delay-Coupled Heterogeneous Networks of FitzHugh-Nagumo Nodes
    Plotnikov, S. A.
    Lehnert, J.
    Fradkov, A. L.
    Scholl, E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04):
  • [34] Experimental study of firing death in a network of chaotic FitzHugh-Nagumo neurons
    Ciszak, Marzena
    Euzzor, Stefano
    Arecchi, F. Tito
    Meucci, Riccardo
    PHYSICAL REVIEW E, 2013, 87 (02):
  • [35] Logical chaotic resonance in the FitzHugh-Nagumo neuron
    Yao, Yuangen
    NONLINEAR DYNAMICS, 2022, 107 (04) : 3887 - 3901
  • [36] On Synchronization in FitzHugh-Nagumo Networks with Small Delays
    Plotnikov, Sergei A.
    Fradkov, Alexander L.
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2052 - 2056
  • [37] Synchronization properties of coupled FitzHugh-Nagumo systems
    Tessone, CJ
    Toral, R
    Mirasso, CR
    Gunton, JD
    PHYSICS OF COMPLEX SYSTEMS (NEW ADVANCES AND PERSPECTIVES), 2004, 155 : 461 - 467
  • [38] OPTIMAL CONTROL OF THE FITZHUGH-NAGUMO NEURONS SYSTEMS IN GENERAL FORM
    Sun, Jie
    Yang, Wanli
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (04): : 757 - 774
  • [39] Estimating the Parameters of Fitzhugh-Nagumo Neurons from Neural Spiking Data
    Doruk, Resat Ozgur
    Abosharb, Laila
    BRAIN SCIENCES, 2019, 9 (12)
  • [40] Analytical and Simulation Results for Stochastic Fitzhugh-Nagumo Neurons and Neural Networks
    Henry C. Tuckwell
    Roger Rodriguez
    Journal of Computational Neuroscience, 1998, 5 : 91 - 113