Intermittent Blood Pressure Prediction via Multiscale Entropy and Ensemble Artificial Neural Networks

被引:0
|
作者
Sadrawi, Muammar [1 ,2 ]
Shieh, Jiann-Shing [1 ,2 ]
Fan, Shou Zen [3 ]
Lin, Chien Hung [4 ]
Haraikawa, Koichi [5 ]
Chien, Jen Chien [5 ]
Abbod, Maysam F. [6 ]
机构
[1] Yuan Ze Univ, Dept Mech Engn, Chungli, Taiwan
[2] Yuan Ze Univ, Innovat Ctr Big Data & Digital Convergence, Chungli, Taiwan
[3] Natl Taiwan Univ, Coll Med, Dept Anesthesiol, Taipei, Taiwan
[4] Cal Comp Inc, Hlth & Beauty Res Ctr, New Taipei City, Taiwan
[5] Kinpo Elect Inc, Hlth & Beauty Res Ctr, New Taipei City, Taiwan
[6] Brunel Univ London, Dept Elect & Comp Engn, Uxbridge, Middx, England
来源
2016 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES) | 2016年
关键词
EMPIRICAL MODE DECOMPOSITION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study evaluates the correlation between the intermittent blood pressure (BP) and the photoplethysmography (PPG). This study of a total of twenty-five cases is started by the partitioning of the PPG signal into a 5-minute segment. The segmented PPG is filtered by ensemble empirical mode decomposition (EEMD). The feature extraction method, multiscale entropy (MSE) is utilized for the purified signal to achieve some information. The seventy-five scale of MSE is taken into the input of the artificial neural network (ANN) modeling. The outputs of this system are the intermittent diastolic and systolic blood pressure. Originally, thousand models are created. The best model is chosen for the best single ANN model. In advanced, the ensemble artificial neural network (EANN) model is initiated to observe the testing data. The result, compared to the best single ANN model, shows that the EANN model recognizes better the testing data by producing lower mean absolute error (MAE).
引用
收藏
页码:356 / 359
页数:4
相关论文
共 50 条
  • [21] Intracranial pressure processing with artificial neural networks: Prediction of ICP trends
    Swiercz, M
    Mariak, Z
    Krejza, J
    Lewko, J
    Szydlik, P
    ACTA NEUROCHIRURGICA, 2000, 142 (04) : 401 - 406
  • [22] Learning Multiscale Neural Metrics via Entropy Minimization
    Brockmeier, Austin J.
    Giraldo, Luis G. Sanchez
    Choi, John S.
    Francis, Joseph T.
    Principe, Jose C.
    2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 247 - 250
  • [23] Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks
    Cheng, Juan
    Xu, Yufei
    Song, Rencheng
    Liu, Yu
    Li, Chang
    Chen, Xun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 138
  • [24] Multiscale ensemble of convolutional neural networks for skin lesion classification
    Liu, Yi-Peng
    Wang, Ziming
    Li, Zhanqing
    Li, Jing
    Li, Ting
    Chen, Peng
    Liang, Ronghua
    IET IMAGE PROCESSING, 2021, 15 (10) : 2309 - 2318
  • [25] Riverflow Prediction with Artificial Neural Networks
    Jayawardena, A. W.
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, PROCEEDINGS, 2009, 43 : 463 - 471
  • [26] ARTIFICIAL NEURAL NETWORKS FOR TOXICITY PREDICTION
    Partridge, M.
    Buettner, F.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S107 - S107
  • [27] Artificial neural networks for streamflow prediction
    Dolling, OR
    Varas, EA
    JOURNAL OF HYDRAULIC RESEARCH, 2002, 40 (05) : 547 - 554
  • [28] Artificial neural networks in outcome prediction
    Lundin, J
    ANNALES CHIRURGIAE ET GYNAECOLOGIAE, 1998, 87 (02) : 128 - 130
  • [29] Allergenicity prediction by artificial neural networks
    Dimitrov, Ivan
    Naneva, Lyudmila
    Bangov, Ivan
    Doytchinova, Irini
    JOURNAL OF CHEMOMETRICS, 2014, 28 (04) : 282 - 286
  • [30] Prediction intervals for artificial neural networks
    Hwang, JTG
    Ding, AA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 748 - 757