GEOMETRY AND SPECTRUM IN 2D MAGNETIC WELLS

被引:28
|
作者
Raymond, Nicolas [1 ]
San Vu Ngoc [1 ]
机构
[1] Univ Rennes 1, IRMAR, UMR 6625, Campus Beaulieu, F-35042 Rennes, France
关键词
magnetic field; normal form; spectral theory; semiclassical limit; Hamiltonian flow; microlocal analysis; SEMICLASSICAL ANALYSIS; SCHRODINGER OPERATOR; NEUMANN LAPLACIAN; ASYMPTOTICS; FIELD; BOTTLES;
D O I
10.5802/aif.2927
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the classical mechanics and spectral analysis of a pure magnetic Hamiltonian in R-2. It is established that both the dynamics and the semiclassical spectral theory can be treated through a Birkhoff normal form and reduced to the study of a family of one dimensional Hamiltonians. As a corollary, recent results by Helffer-Kordyukov are extended to higher energies.
引用
收藏
页码:137 / 169
页数:33
相关论文
共 50 条
  • [21] Photoemission from 2D metallic quantum wells
    Pervan, Petar
    Milun, Milorad
    SURFACE SCIENCE, 2009, 603 (10-12) : 1378 - 1388
  • [22] SPECTRUM OF 2D BLOCH ELECTRONS IN A PERIODIC MAGNETIC-FIELD - ALGEBRAIC APPROACH
    BARELLI, A
    BELLISSARD, J
    RAMMAL, R
    JOURNAL DE PHYSIQUE, 1990, 51 (19): : 2167 - 2185
  • [23] Energy spectrum of carriers in 2D Kane type semiconductors in an inhomogeneous magnetic field
    Babayev, A. M.
    PHYSICA SCRIPTA, 2007, 75 (04) : 543 - 545
  • [24] Geometry and algorithms to expand 2θ coverage of a 2D detector
    He, Bob B.
    POWDER DIFFRACTION, 2018, 33 (02) : 147 - 155
  • [25] Rademacher expansions and the spectrum of 2d CFT
    Luis F. Alday
    Jin-Beom Bae
    Journal of High Energy Physics, 2020
  • [26] Identification of a 2D turbulent wind spectrum
    Mouyon, P
    Imbert, N
    AEROSPACE SCIENCE AND TECHNOLOGY, 2002, 6 (08) : 599 - 605
  • [27] Geometry of the matching distance for 2D filtering functions
    Ethier M.
    Frosini P.
    Quercioli N.
    Tombari F.
    Journal of Applied and Computational Topology, 2023, 7 (4) : 815 - 830
  • [28] ASAP: Interactive quantification of 2D airway geometry
    DSouza, ND
    Reinhardt, JM
    Hoffman, EA
    MEDICAL IMAGING 1996: PHYSIOLOGY AND FUNCTION FROM MULTIDIMENSIONAL IMAGES, 1996, 2709 : 180 - 196
  • [29] ON THE GEOMETRY AND INTERNAL ENERGY OF 2D COVALENT NETWORKS
    SANTOS, DMLF
    KERNER, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1984, 299 (14): : 899 - &
  • [30] Simplification of 2D domain space mapped geometry
    Odaker, C
    Kurka, G
    CISST '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY: COMPUTER GRAPHICS, 2005, : 198 - 204