WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

被引:11
|
作者
Shinnaga, Hiroko [1 ]
Phillips, Thomas G. [1 ,2 ]
Furuya, Ray S. [3 ]
Kitamura, Yoshimi [4 ]
机构
[1] CALTECH, Submillimeter Observ CSO, Hilo, HI 96720 USA
[2] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[3] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA
[4] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan
关键词
ISM: clouds; ISM:; individual; (L1521F; MC27); stars: formation; stars: pre-main sequence; submillimeter; YOUNG STELLAR OBJECTS; EVOLVED STARLESS CORE; INITIAL CONDITIONS; MOLECULAR CLOUD; EMISSION; TAURUS; CONDENSATION; TRANSITION; EXCITATION; PROTOSTARS;
D O I
10.1088/0004-637X/706/2/L226
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (similar to 30-70 K), extended (radius of similar to 2400 AU), dense ( a few times 10(5) cm(-3)) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, "warm-in-cold core stage (WICCS)," i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.
引用
收藏
页码:L226 / L229
页数:4
相关论文
共 50 条
  • [21] Thermal excitation signals in the inhomogeneous warm dense electron gas
    Moldabekov, Zhandos A.
    Dornheim, Tobias
    Cangi, Attila
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [22] ALMA Explorations of Warm Dense Molecular Gas in Nearby LIRGs
    Xu, C. Kevin
    GALAXIES IN 3D ACROSS THE UNIVERSE, 2014, 10 (309): : 61 - 64
  • [23] WARM DENSE GAS IN THE REFLECTION NEBULA NGC-2023
    JAFFE, DT
    GENZEL, R
    HARRIS, AI
    HOWE, JE
    STACEY, GJ
    STUTZKI, J
    ASTROPHYSICAL JOURNAL, 1990, 353 (01): : 193 - 199
  • [24] Warm, dense molecular gas in the ISM of starbursts, LIRGs, and ULIRGs
    Narayanan, D
    Groppi, CE
    Kulesa, CA
    Walker, CK
    ASTROPHYSICAL JOURNAL, 2005, 630 (01): : 269 - 279
  • [25] Exchange-correlation energy of the warm dense electron gas
    Malone, Fionn
    Blunt, Nick
    Shepherd, James
    Lee, Derek
    Spencer, James
    Foulkes, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [26] Thermal excitation signals in the inhomogeneous warm dense electron gas
    Zhandos A. Moldabekov
    Tobias Dornheim
    Attila Cangi
    Scientific Reports, 12
  • [27] Theory of plasmon decay in dense plasmas and warm dense matters
    Son, S.
    Ku, S.
    Moon, Sung Joon
    PHYSICS OF PLASMAS, 2010, 17 (11)
  • [28] Magnetic processes in a collapsing dense core - II. Fragmentation. Is there a fragmentation crisis?
    Hennebelle, P.
    Teyssier, R.
    ASTRONOMY & ASTROPHYSICS, 2008, 477 (01) : 25 - 34
  • [29] The structure in warm dense carbon
    Vorberger, J.
    Plageman, K. U.
    Redmer, R.
    HIGH ENERGY DENSITY PHYSICS, 2020, 35
  • [30] Depletion of CO in a cold dense cloud core of IC 5146
    Kramer, C
    Alves, J
    Lada, CJ
    Lada, EA
    Sievers, A
    Ungerechts, H
    Walmsley, CM
    ASTRONOMY & ASTROPHYSICS, 1999, 342 (01) : 257 - 270