Magnetically Activated Electroactive Microenvironments for Skeletal Muscle Tissue Regeneration

被引:44
|
作者
Ribeiro, Sylvie [1 ,2 ]
Ribeiro, Clarisse [1 ,3 ]
Carvalho, Estela O. [1 ,3 ]
Tubio, Carmen R. [4 ]
Castro, Nelson [4 ]
Pereira, Nelson [1 ,5 ]
Correia, Vitor [1 ,5 ]
Gomes, Andreia C. [2 ]
Lanceros-Mendez, Senentxu [1 ,4 ,6 ]
机构
[1] Univ Minho, Ctr Dept Fis, P-4710057 Braga, Portugal
[2] Univ Minho, Ctr Mol & Environm Biol CBMA, P-4710057 Braga, Portugal
[3] Univ Minho, CEB Ctr Biol Engn, P-4710057 Braga, Portugal
[4] Basque Ctr Mat Applicat & Nanostruct, BCMat, Leioa 48940, Spain
[5] Univ Minho, Ctr Algoritmi, Leioa 48940, Spain
[6] Basque Fdn Sci, IKERBASQUE, Bilbao 48013, Spain
来源
ACS APPLIED BIO MATERIALS | 2020年 / 3卷 / 07期
关键词
magnetoelectric biomaterials; muscle tissue engineering; mechanoelectrical stimuli; myotubes; bioreactors; POLY(VINYLIDENE FLUORIDE); OSTEOGENIC DIFFERENTIATION; SURFACE WETTABILITY; STIMULATION; CELLS; ROUGHNESS; MEMBRANES; ADHESION; PHASES; FILMS;
D O I
10.1021/acsabm.0c00315
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work reports on magnetoelectric biomaterials suitable for effective proliferation and differentiation of myoblast in a biomimetic microenvironment providing the electromechanical stimuli associated with this tissue in the human body. Magnetoelectric films are obtained by solvent casting through the combination of a piezoelectric polymer, poly(vinylidene fluoride-trifluoro-ethylene), and magnetostrictive particles (CoFe2O4). The nonpoled and poled (with negative and positive surface charge) magnetoelectric composites are used to investigate their influence on C2C12 myoblast adhesion, proliferation, and differentiation. It is demonstrated that the proliferation and differentiation of the cells are enhanced by the application of mechanical and/or electrical stimulation, with higher values of maturation index under mechanoelectrical stimuli. These results show that magnetoelectric cell stimulation is a full potential approach for skeletal muscle tissue engineering applications.
引用
收藏
页码:4239 / 4252
页数:14
相关论文
共 50 条
  • [31] REGENERATION IN HUMAN SKELETAL MUSCLE
    GILBERT, RK
    HAZARD, JB
    [J]. JOURNAL OF PATHOLOGY AND BACTERIOLOGY, 1965, 89 (02): : 503 - &
  • [32] REGENERATION OF MATURE SKELETAL MUSCLE
    LASH, JW
    HOLTZER, H
    [J]. ANATOMICAL RECORD, 1957, 128 (04): : 679 - 697
  • [33] SKELETAL MUSCLE AUTOTRANSPLANTATION AND REGENERATION
    ALLBROOK, D
    [J]. JOURNAL OF ANATOMY, 1970, 106 : 195 - &
  • [34] SKELETAL-MUSCLE REGENERATION
    ALLBROOK, D
    [J]. MUSCLE & NERVE, 1981, 4 (03) : 234 - 245
  • [35] SKELETAL-MUSCLE REGENERATION
    HAY, ED
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 1971, 284 (18): : 1033 - &
  • [36] Skeletal muscle development and regeneration
    Grefte, Sander
    Kuijpers-Jagtman, Anne Marie
    Torensma, Ruurd
    Von den Hoff, Johannes W.
    [J]. STEM CELLS AND DEVELOPMENT, 2007, 16 (05) : 857 - 868
  • [37] Nanomaterial for Skeletal Muscle Regeneration
    Jeong, Gun-Jae
    Castels, Hannah
    Kang, Innie
    Aliya, Berna
    Jang, Young C.
    [J]. TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2022, 19 (02) : 253 - 261
  • [38] Nanomaterial for Skeletal Muscle Regeneration
    Gun-Jae Jeong
    Hannah Castels
    Innie Kang
    Berna Aliya
    Young C. Jang
    [J]. Tissue Engineering and Regenerative Medicine, 2022, 19 : 253 - 261
  • [39] Hydrogels for Skeletal Muscle Regeneration
    Kristin M. Fischer
    Tracy E. Scott
    Daniel P. Browe
    Tyler A. McGaughey
    Caroline Wood
    Michael J. Wolyniak
    Joseph W. Freeman
    [J]. Regenerative Engineering and Translational Medicine, 2021, 7 : 353 - 361
  • [40] The potential for Treg-enhancing therapies in tissue, in particular skeletal muscle, regeneration
    Hanna, Bola S.
    Yaghi, Omar K.
    Langston, P. Kent
    Mathis, Diane
    [J]. CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 2023, 211 (02): : 138 - 148