A WEIGHTED MAXIMAL WEAK-TYPE INEQUALITY

被引:1
|
作者
Osekowski, Adam [1 ]
Rapicki, Mateusz [1 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
42B25; 46E30;
D O I
10.1112/mtk.12065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let w be a dyadic Ap weight (1p<<infinity>), and let MD be the dyadic Hardy-Littlewood maximal function on Rd. The paper contains the proof of the estimate w{x is an element of Rd:MDf(x)>w(x)}Cp[w]Ap integral Rd|f|dx, where the constant Cp does not depend on the dimension d. Furthermore, the linear dependence on [w]Ap is optimal, which is a novel result for 1<p<infinity. The estimate is shown to hold in a wider context of probability spaces equipped with an arbitrary tree-like structure. The proof rests on the Bellman function method: we construct an abstract special function satisfying certain size and concavity requirements.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 50 条