A WEIGHTED MAXIMAL WEAK-TYPE INEQUALITY

被引:1
|
作者
Osekowski, Adam [1 ]
Rapicki, Mateusz [1 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
42B25; 46E30;
D O I
10.1112/mtk.12065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let w be a dyadic Ap weight (1p<<infinity>), and let MD be the dyadic Hardy-Littlewood maximal function on Rd. The paper contains the proof of the estimate w{x is an element of Rd:MDf(x)>w(x)}Cp[w]Ap integral Rd|f|dx, where the constant Cp does not depend on the dimension d. Furthermore, the linear dependence on [w]Ap is optimal, which is a novel result for 1<p<infinity. The estimate is shown to hold in a wider context of probability spaces equipped with an arbitrary tree-like structure. The proof rests on the Bellman function method: we construct an abstract special function satisfying certain size and concavity requirements.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 50 条
  • [1] A Weighted Weak-Type Inequality for One-Sided Maximal Operators
    J. Wang
    Y. Ren
    E. Zhang
    Ukrainian Mathematical Journal, 2023, 75 : 817 - 826
  • [2] A WEIGHTED WEAK-TYPE INEQUALITY FOR ONE-SIDED MAXIMAL OPERATORS
    Wang, J.
    Ren, Y.
    Zhang, E.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (5) : 817 - 826
  • [3] Maximal weak-type inequality for stochastic integrals
    Osekowski, Adam
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 13
  • [4] Weighted weak-type inequalities for maximal operators and singular integrals
    Cruz-Uribe, David
    Sweeting, Brandon
    REVISTA MATEMATICA COMPLUTENSE, 2024, : 183 - 205
  • [5] From Weak-type Weighted Inequality to Pointwise Estimate for the Decreasing Rearrangement
    Agora, Elona
    Antezana, Jorge
    Baena-Miret, Sergi
    Carro, Maria J.
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [6] The weighted weak type inequality for the strong maximal function
    Mitsis, Themis
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (06) : 645 - 652
  • [8] The Weighted Weak Type Inequality for the Strong Maximal Function
    Themis Mitsis
    Journal of Fourier Analysis and Applications, 2006, 12 : 645 - 652
  • [9] From Weak-type Weighted Inequality to Pointwise Estimate for the Decreasing Rearrangement
    Elona Agora
    Jorge Antezana
    Sergi Baena-Miret
    María J. Carro
    The Journal of Geometric Analysis, 2022, 32
  • [10] A weak-type inequality for convolution products
    Bellow, A
    Calderón, AP
    HARMONIC ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS: ESSAYS IN HONOR OF ALBERTO P CALDERON, 1999, : 41 - 48