Steiner almost self-complementary graphs and halving near-Steiner triple systems

被引:0
|
作者
Meszka, Mariusz [2 ]
Rosa, Alexander [1 ]
Ziolo, Irmina [2 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
[2] AGH UST, Fac Appl Math, Krakow, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
Self-complementary; Near-Steiner triple system; AUTOMORPHISMS;
D O I
10.1016/j.disc.2008.04.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for every admissible order v equivalent to 0 or 2 (mod 6) there exists a near-Steiner triple system of order v that can be halved. As a corollary we obtain that a Steiner almost self-complementary graph with n vertices exists if and only if n equivalent to 0 or 2 (mod 6). (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5650 / 5654
页数:5
相关论文
共 50 条
  • [21] Brick assignments and homogeneously almost self-complementary graphs
    Potocnik, Primoz
    Sajna, Mateja
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (01) : 185 - 201
  • [22] Almost self-complementary factors of complete bipartite graphs
    Froncek, D
    DISCRETE MATHEMATICS, 1997, 167 : 317 - 327
  • [23] CONSTRUCTION OF LARGE SETS OF ALMOST DISJOINT STEINER TRIPLE SYSTEMS
    LINDNER, CC
    ROSA, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1975, 27 (02): : 256 - 260
  • [24] Almost all Steiner triple systems have perfect matchings
    Kwan, Matthew
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2020, 121 (06) : 1468 - 1495
  • [25] CONSTRUCTION OF LARGE SETS OF ALMOST DISJOINT STEINER TRIPLE SYSTEMS
    LINDNER, CC
    ROSA, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A30 - A30
  • [26] RECONSTRUCTING GRAPHS AS SUBSUMED GRAPHS OF HYPERGRAPHS, AND SOME SELF-COMPLEMENTARY TRIPLE-SYSTEMS
    KOCAY, W
    GRAPHS AND COMBINATORICS, 1992, 8 (03) : 259 - 276
  • [27] A Construction of Almost Steiner Systems
    Ferber, Asaf
    Hod, Rani
    Krivelevich, Michael
    Sudakov, Benny
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (11) : 488 - 494
  • [28] Motifs in triadic random graphs based on Steiner triple systems
    Winkler, Marco
    Reichardt, Joerg
    PHYSICAL REVIEW E, 2013, 88 (02)
  • [29] Binomial partial Steiner triple systems containing complete graphs
    Małgorzata Prażmowska
    Krzysztof Prażmowski
    Graphs and Combinatorics, 2016, 32 : 2079 - 2092
  • [30] Binomial partial Steiner triple systems containing complete graphs
    Prazmowska, Malgorzata
    Prazmowski, Krzysztof
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2079 - 2092