Shape optimization for a tube bank based on the numerical simulation and multi-objective genetic algorithm

被引:19
|
作者
Ge, Ya [1 ]
Lin, Yousheng [1 ]
Tao, Shi [1 ]
He, Qing [1 ]
Chen, Baiman [1 ]
Huang, Si-Min [1 ]
机构
[1] Dongguan Univ Technol, Sch Chem Engn & Energy Technol, Guangdong Prov Key Lab Distributed Energy Syst, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Heat transfer enhancement; Tube bank; Multi-objective optimization; Shape design; Best compromise solution; CONVECTIVE HEAT-TRANSFER; PERFORMANCE EVALUATION; TRANSFER ENHANCEMENT; EXCHANGER; FLOW; FIN; DESIGN; PRINCIPLE;
D O I
10.1016/j.ijthermalsci.2020.106787
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents an optimal shape design for a tube bank in turbulent flow to enhance the thermal and hydraulic performance, where the multi-objective genetic algorithm (MOGA) and computational fluid dynamics (CFD) software is coupled in the optimization procedure. Five tubes in the tube bank could have different shapes, and twenty-five polar radii are selected as design variables accordingly. After the optimization, the initial circular tube bank is compared with two optimal solutions with the same pressure drop Delta p or the same average heat flux q. Results show that the optimal solution could increase q by 7.6% without additional flow resistance or reduce Delta p by 27% without heat transfer deterioration. Furthermore, the best compromise solution is determined by a decision-making approach, TOPSIS (technique for order preference by similarity to an ideal solution), where three different weighting factors are tested. It is found that all the selected solutions are located in the low pressure drop area, which indicates reducing the flow resistance may better improve the comprehensive performance of staggered arrangement tube banks.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] An improved genetic algorithm for multi-objective optimization
    Lin, F
    He, GM
    PDCAT 2005: Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, Proceedings, 2005, : 938 - 940
  • [22] Multi-objective optimization with improved genetic algorithm
    Ishibashi, H
    Aguirre, HE
    Tanaka, K
    Sugimura, T
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 3852 - 3857
  • [23] An improved genetic algorithm for multi-objective optimization
    Chen, GL
    Guo, WZ
    Tu, XZ
    Chen, HW
    Progress in Intelligence Computation & Applications, 2005, : 204 - 210
  • [24] Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm
    Liu, Chunbao
    Bu, Weiyang
    Xu, Dong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 111 : 65 - 82
  • [25] Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm
    Sadeghzadeh, Heidar
    Aliehyaei, Mehdi
    Rosen, Marc A.
    SUSTAINABILITY, 2015, 7 (09) : 11679 - 11695
  • [26] Multi-objective optimization of elliptical tube fin heat exchangers based on neural networks and genetic algorithm
    Zhang, Tianyi
    Chen, Lei
    Wang, Jin
    ENERGY, 2023, 269
  • [27] Shape Optimization in Product Design Using Interactive Genetic Algorithm Integrated with Multi-objective Optimization
    Kielarova, Somlak Wannarumon
    Sansri, Sunisa
    MULTI-DISCIPLINARY TRENDS IN ARTIFICIAL INTELLIGENCE, (MIWAI 2016), 2016, 10053 : 76 - 86
  • [28] Multi-objective optimization based on parallel multi-families genetic algorithm
    Lu, Hai
    Yan, Liexiang
    Shi, Bin
    Lin, Zixiong
    Li, Xiaochun
    Huagong Xuebao/CIESC Journal, 2012, 63 (12): : 3985 - 3990
  • [29] An interval multi-objective optimization algorithm based on elite genetic strategy
    Cui, Zhihua
    Jin, Yaqing
    Zhang, Zhixia
    Xie, Liping
    Chen, Jinjun
    INFORMATION SCIENCES, 2023, 648
  • [30] Test Case Optimization and Prioritization Based on Multi-objective Genetic Algorithm
    Mishra, Deepti Bala
    Mishra, Rajashree
    Acharya, Arup Abhinna
    Das, Kedar Nath
    HARMONY SEARCH AND NATURE INSPIRED OPTIMIZATION ALGORITHMS, 2019, 741 : 371 - 381