Extended finite element method in computational fracture mechanics: a retrospective examination

被引:111
|
作者
Sukumar, N. [1 ]
Dolbow, J. E. [2 ]
Moes, N. [3 ]
机构
[1] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
[2] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA
[3] Ecole Cent Nantes, GeM Inst, F-44321 Nantes, France
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Elastic fracture; Strong discontinuities; Singularities; Cracks; Partition-of-unity enrichment; X-FEM; 3D CRACK-GROWTH; LEVEL SETS; X-FEM; SINGULAR FUNCTIONS; PART I; STRONG DISCONTINUITIES; WEAK DISCONTINUITIES; ENRICHMENT FUNCTIONS; QUADRATURE-RULES; CONTINUUM DAMAGE;
D O I
10.1007/s10704-015-0064-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we provide a retrospective examination of the developments and applications of the extended finite element method (X-FEM) in computational fracture mechanics. Our main attention is placed on the modeling of cracks (strong discontinuities) for quasistatic crack growth simulations in isotropic linear elastic continua. We provide a historical perspective on the development of the method, and highlight the most important advances and best practices as they relate to the formulation and numerical implementation of the X-FEM for fracture problems. Existing challenges in the modeling and simulation of dynamic fracture, damage phenomena, and capturing the transition from continuum-to-discontinuum are also discussed.
引用
收藏
页码:189 / 206
页数:18
相关论文
共 50 条
  • [41] FRACTURE PARAMETER CALCULATION OF STATIONARY CRACKS WITH EXTENDED FINITE ELEMENT METHOD
    Zhao, Ernian
    Qu, Weilian
    [J]. PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING, VOLS 1 AND II, 2014, : 645 - 651
  • [42] An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method
    Lins, R. M.
    Ferreira, M. D. C.
    Proenca, S. P. B.
    Duarte, C. A.
    [J]. COMPUTATIONAL MECHANICS, 2015, 56 (06) : 947 - 965
  • [43] An extended polygonal finite element method for large deformation fracture analysis
    Huynh, Hai D.
    Tran, Phuong
    Zhuang, Xiaoying
    Nguyen-Xuan, H.
    [J]. ENGINEERING FRACTURE MECHANICS, 2019, 209 : 344 - 368
  • [44] Ceramic nuclear fuel fracture modeling with the extended finite element method
    Jiang, Wen
    Spencer, Benjamin W.
    Dolbow, John E.
    [J]. ENGINEERING FRACTURE MECHANICS, 2020, 223 (223)
  • [45] Fracture analysis for materials by a stable generalized/extended finite element method
    Jia, H. G.
    Zhao, Y. M.
    Nie, Y. F.
    Li, S. Q.
    [J]. JOURNAL OF MECHANICS, 2021, 37 : 513 - 521
  • [46] Modeling competing hydraulic fracture propagation with the extended finite element method
    Liu, Fushen
    Gordon, Peter A.
    Valiveti, Dakshina M.
    [J]. ACTA GEOTECHNICA, 2018, 13 (02) : 243 - 265
  • [47] Investigation of the fracture mechanism of level ice with extended finite element method
    Xu, Ying
    Wu, Jiameng
    Li, Pingshu
    Kujala, Pentti
    Hu, Zhiqiang
    Chen, Gang
    [J]. OCEAN ENGINEERING, 2022, 260
  • [48] A Multiscale Molecular Dynamics/Extended Finite Element Method for Dynamic Fracture
    Aubertin, Pascal
    Rethore, Julien
    de Borst, Rene
    [J]. COMPUTER METHODS IN MECHANICS, 2010, 1 : 211 - +
  • [49] Implementation of the extended finite element method for dynamic thermoelastic fracture initiation
    Zamani, Arash
    Eslami, M. Reza
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (10) : 1392 - 1404
  • [50] An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method
    R. M. Lins
    M. D. C. Ferreira
    S. P. B. Proença
    C. A. Duarte
    [J]. Computational Mechanics, 2015, 56 : 947 - 965