EXACT SERIES RECONSTRUCTION IN PHOTOACOUSTIC TOMOGRAPHY WITH CIRCULAR INTEGRATING DETECTORS

被引:0
|
作者
Zangerl, Gerhard [1 ]
Scherzer, Otmar [1 ,2 ]
Haltmeier, Markus [1 ]
机构
[1] Univ Innsbruck, Dept Math, A-6020 Innsbruck, Austria
[2] Radon Inst Computat & Appl Math, A-4040 Linz, Austria
关键词
Radon transform; photoacoustic tomography; photoacoustic microscopy; Hankel transform; image reconstruction; integrating detectors; axially symmetric; wave equation; THERMOACOUSTIC TOMOGRAPHY; IN-VIVO; INVERSION; TRANSFORM; PHOTO;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for photoacoustic tomography is presented that uses circular integrals of the acoustic wave for the reconstruction of a three-dimensional image. Image reconstruction is a two-step process: In the first step data from a stack of circular integrating detectors are used to reconstruct the circular projection of the source distribution. In the second step the inverse circular Radon transform is applied. In this article we establish inversion formulas for the first step, which involves an inverse problem for the axially symmetric wave equation. Numerical results are presented that show the validity and robustness of the resulting algorithm.
引用
收藏
页码:665 / 678
页数:14
相关论文
共 50 条
  • [41] Bayesian approach to image reconstruction in photoacoustic tomography
    Tick, Jenni
    Pulkkinen, Aki
    Tarvainen, Tanja
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2017, 2017, 10064
  • [42] THERMO-AND PHOTOACOUSTIC TOMOGRAPHY WITH VARIABLE SPEED AND PLANAR DETECTORS
    Stefanov, Plamen
    Yang, Yang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (01) : 297 - 310
  • [43] Characterization of broadband fiber optic line detectors for photoacoustic tomography
    Berer, Thomas
    Veres, Istvan A.
    Gruen, Hubert
    Bauer-Marschallinger, Johannes
    Felbermayer, Karoline
    Burgholzer, Peter
    JOURNAL OF BIOPHOTONICS, 2012, 5 (07) : 518 - 528
  • [44] A simple Fourier transform-based reconstruction formula for photoacoustic computed tomography with a circular or spherical measurement geometry
    Wang, Kun
    Anastasio, Mark A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (23): : N493 - N499
  • [45] A simple Fourier transform-based reconstruction formula for photoacoustic computed tomography with a circular or spherical measurement geometry
    Wang, Kun
    Anastasio, Mark A.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2013, 2013, 8581
  • [46] Image reconstruction in transcranial photoacoustic computed tomography of the brain
    Mitsuhashi, Kenji
    Wang, Lihong V.
    Anastasio, Mark A.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2015, 2015, 9323
  • [47] Multi-bandwidth image reconstruction in photoacoustic tomography
    Chou, Cheng-Ying
    Anastasio, Mark A.
    Zhang, Jin
    Ku, Geng
    Yang, Xinmai
    Wang, Lihong V.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2008: THE NINTH CONFERENCE ON BIOMEDICAL THERMOACOUSTICS, OPTOACOUSTICS, AND ACOUSTIC-OPTICS, 2008, 6856
  • [48] A Reconstruction Approach for Non-contract Photoacoustic Tomography
    Verbytskyi, Ievgen
    Buj, Christian
    2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 376 - 379
  • [49] Reconstruction Algorithms for Photoacoustic Tomography in Heterogeneous Damping Media
    Haltmeier, Markus
    Nguyen, Linh V.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2019, 61 (07) : 1007 - 1021
  • [50] Reconstruction-classification method for quantitative photoacoustic tomography
    Malone, Emma
    Powell, Samuel
    Cox, Ben T.
    Arridge, Simon
    JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (12)