Revisiting the discrete planar Laplacian: exact results for the lattice Green function and continuum limit

被引:3
|
作者
Mamode, Malik [1 ]
机构
[1] Univ La Reunion, Lab PIMENT, Dept Phys, La Reunion, France
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2021年 / 136卷 / 04期
关键词
RESISTANCE; EXPANSIONS; GRAPHENE; NETWORK;
D O I
10.1140/epjp/s13360-021-01439-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper deals with the discrete Laplacian on a uniform infinite square lattice. The definition of its fundamental solution or lattice Green function (LGF) is clarified as the Fourier coefficients of a certain generalized periodic function g. Such a functional must be regularized and gives the LGF up to a constant equal to < g >, the mean value of g. For < g >=0, the LGF may be expressed in an exact analytic form in terms of hypergeometric and gamma functions. The continuum limit of the LGF is finally studied requiring an appropriate renormalization of < g > in order to obtain the logarithmic Coulomb potential.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Exact product forms for the simple cubic lattice Green function II
    Joyce, GS
    Delves, RT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (20): : 5417 - 5447
  • [32] Exact Discrete Exp-function Solutions of the Relativistic Toda Lattice System
    Wu, Xiao-Fei
    Hua, Guo-Sheng
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [33] Rates of convergence for the planar discrete Green's function in Pacman domains
    Benes, Christian
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [34] A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice
    Zha, QL
    Sirendaoreji
    CHINESE PHYSICS, 2006, 15 (03): : 475 - 477
  • [35] Inverse formulation of the Green's function theory: Exact solution for the Bethe lattice
    Samaj, L
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (21): : 2935 - 2943
  • [36] EXACT COMPUTATION OF LATTICE GREEN-FUNCTION FOR ARBITRARY POLYMER HELICES BY INTEGRATION
    SCHMID, C
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (24): : L458 - L460
  • [37] Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III
    Borsanyi, Szabolcs
    Fodor, Zoltan
    Hoelbling, Christian
    Katz, Sandor D.
    Krieg, Stefan
    Ratti, Claudia
    Szabo, Kalman K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (09):
  • [38] Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III
    Szabolcs Borsányi
    Zoltán Fodor
    Christian Hoelbling
    Sándor D. Katz
    Stefan Krieg
    Claudia Ratti
    Kálmán K. Szabó
    Journal of High Energy Physics, 2010
  • [39] VERTEX FUNCTION FOR THE COUPLING OF AN ELECTRON WITH INTRAMOLECULAR PHONONS - EXACT RESULTS IN THE ANTIADIABATIC LIMIT
    TAKADA, Y
    HIGUCHI, T
    PHYSICAL REVIEW B, 1995, 52 (17): : 12720 - 12735
  • [40] THE GELL-MANN LOW FUNCTION AND THE CONTINUUM-LIMIT OF LATTICE GAUGE-THEORIES
    VANYASHIN, AV
    EMELYANOV, VM
    GREBENEV, SA
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1985, 41 (06): : 1054 - 1055