Revisiting the discrete planar Laplacian: exact results for the lattice Green function and continuum limit

被引:3
|
作者
Mamode, Malik [1 ]
机构
[1] Univ La Reunion, Lab PIMENT, Dept Phys, La Reunion, France
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2021年 / 136卷 / 04期
关键词
RESISTANCE; EXPANSIONS; GRAPHENE; NETWORK;
D O I
10.1140/epjp/s13360-021-01439-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper deals with the discrete Laplacian on a uniform infinite square lattice. The definition of its fundamental solution or lattice Green function (LGF) is clarified as the Fourier coefficients of a certain generalized periodic function g. Such a functional must be regularized and gives the LGF up to a constant equal to < g >, the mean value of g. For < g >=0, the LGF may be expressed in an exact analytic form in terms of hypergeometric and gamma functions. The continuum limit of the LGF is finally studied requiring an appropriate renormalization of < g > in order to obtain the logarithmic Coulomb potential.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Revisiting the discrete planar Laplacian: exact results for the lattice Green function and continuum limit
    Malik Mamode
    The European Physical Journal Plus, 136
  • [2] Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk
    Molchanov, S. A.
    Yarovaya, E. B.
    IZVESTIYA MATHEMATICS, 2012, 76 (06) : 1190 - 1217
  • [3] Continuum limit of discrete Sommerfeld problems on square lattice
    BASANT LAL SHARMA
    Sādhanā, 2017, 42 : 713 - 728
  • [4] Continuum limit of discrete Sommerfeld problems on square lattice
    Sharma, Basant Lal
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2017, 42 (05): : 713 - 728
  • [5] Asymptotics of discrete orthogonal polynomials and the continuum limit of the Toda lattice
    Aptekarev, AI
    Van Assche, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10627 - 10637
  • [6] Some exact results for the face-centred cubic lattice Green function
    Joyce, G. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (31)
  • [7] Lattice fractional Laplacian and its continuum limit kernel on the finite cyclic chain
    Michelitsch, T. M.
    Collet, B.
    Nowakowski, A. F.
    Nicolleau, F. C. G. A.
    CHAOS SOLITONS & FRACTALS, 2016, 82 : 38 - 47
  • [8] INVARIANCE CONDITIONS IN TRANSMISSION FROM DISCRETE LATTICE MODELS TO CONTINUUM LIMIT
    LUDWIG, W
    ARCHIVES OF MECHANICS, 1976, 28 (03): : 501 - 515
  • [9] Isogeometric analysis for nonlinear planar pantographic lattice: discrete and continuum models
    F. Maurin
    F. Greco
    W. Desmet
    Continuum Mechanics and Thermodynamics, 2019, 31 : 1051 - 1064
  • [10] On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions
    Kay Kirkpatrick
    Enno Lenzmann
    Gigliola Staffilani
    Communications in Mathematical Physics, 2013, 317 : 563 - 591