In vivo brain imaging of tangle burden in humans

被引:0
|
作者
Small, GW
Agdeppa, ED
Kepe, V
Satyamurthy, N
Huang, SC
Barrio, JR
机构
[1] Univ Calif Los Angeles, Inst Neuropsychiat, Dept Psychiat & Biobehav Sci, Sch Med, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Dept Mol & Med Pharmacol, Sch Med, Los Angeles, CA 90024 USA
[3] Univ Calif Los Angeles, Alzheimers Dis Res Ctr, Sch Med, Los Angeles, CA 90024 USA
[4] Univ Calif Los Angeles, Ctr Aging, Sch Med, Los Angeles, CA 90024 USA
[5] VA Greater Los Angeles Healthcare Syst, Los Angeles, CA USA
关键词
Alzheimer's disease; positron emission tomography; cerebral glucose metabolism; neurofibrillary tangles;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cerebral neurofibrillary tangles (NFTs) accumulate in a predictable sequence decades before the clinical symptoms of Alzheimer's disease emerge, and the degree of tangle degeneration correlates with the severity of cognitive impairment. A valid in vivo marker of tangle burden, therefore, would be useful for presymptomatic and symptomatic disease detection and treatment monitoring. Recent advances using positron emission tomography (PET) indicate the feasibility of in vivo imaging that provides a combined signal of both neurofibrillary tangles and senile plaques. Such results are encouraging that a tangle-specific marker will be found; however, several methodological issues first need to be addressed, including scanner spatial resolution in the relatively small brain regions where tangles accumulate. NFT-specific imaging probes will need to be lipophilic in order to cross the blood-brain barrier and neuronal membranes and have a high binding affinity to NFTs with minimal nonspecific binding, which would result in a high signal-to-background ratio in PET images.
引用
收藏
页码:323 / 327
页数:5
相关论文
共 50 条
  • [21] Window into the Brain: In Vivo Multiphoton Imaging
    Latifi, Shahrzad
    Devries, A. Courtney
    ACS PHOTONICS, 2024, 12 (01): : 1 - 15
  • [22] In vivo optical imaging of brain activity
    Mo C.
    Chen S.
    Zhai M.
    Wu R.
    Wang Z.
    Yu J.
    Wang A.
    Chen L.
    Cheng H.
    Kexue Tongbao/Chinese Science Bulletin, 2018, 63 (36): : 3945 - 3960
  • [23] Functional brain imaging of spinal cord injured humans
    Cohen, MJ
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2000, 35 (01) : 35 - 35
  • [24] Imaging the brain-gut-microbiome axis in humans
    Mayer, E.
    Tillisch, K.
    Labus, J.
    INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2014, 17 : 27 - 27
  • [25] AN INVIVO MODEL FOR IMAGING BRAIN DOPAMINE SYSTEMS IN HUMANS
    WOOTEN, GF
    HORNE, MK
    ANNALS OF NEUROLOGY, 1981, 10 (01) : 92 - 92
  • [26] PHENOTYPING VISCERAL PAIN IN HUMANS USING BRAIN IMAGING
    Coen, S. J.
    Kano, M.
    Farmer, A. D.
    Fukudo, S.
    Aziz, Q.
    GUT, 2010, 59 : A28 - A28
  • [27] In vivo imaging of retinal neurodegeneration at the single cell level in humans
    Herms, Jochen
    Schoen, Christian
    BRAIN, 2017, 140 : 1542 - 1543
  • [28] Estimation of in vivo brain-to-skull conductivity ratio in humans
    Zhang, Yingchun
    van Drongelen, Wim
    He, Bin
    APPLIED PHYSICS LETTERS, 2006, 89 (22)
  • [29] In vivo biomarkers of structural and functional brain development and aging in humans
    Franke, K.
    Bublak, P.
    Hoyer, D.
    Billiet, T.
    Gaser, C.
    Witte, O. W.
    Schwab, M.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2020, 117 : 142 - 164
  • [30] In Vivo Imaging of Enhanced Leukocyte Accumulation in Atherosclerotic Lesions in Humans
    van der Valk, Fleur M.
    Kroon, Jeffrey
    Potters, Wouter V.
    Thurlings, Rogier M.
    Bennink, Roelof J.
    Verberne, Hein J.
    Nederveen, Aart J.
    Nieuwdorp, Max
    Mulder, Willem J. M.
    Fayad, Zahi A.
    van Buul, Jaap D.
    Stroes, Erik S. G.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 64 (10) : 1019 - 1029