Depth-Aware Salient Object Detection and Segmentation via Multiscale Discriminative Saliency Fusion and Bootstrap Learning

被引:179
|
作者
Song, Hangke [1 ]
Liu, Zhi [1 ]
Du, Huan [2 ,3 ]
Sun, Guangling [1 ]
Le Meur, Olivier [4 ]
Ren, Tongwei [5 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
[3] Minist Publ Secur, Res Inst 3, Shanghai 201204, Peoples R China
[4] Univ Rennes 1, IRISA, F-35042 Rennes, France
[5] Nanjing Univ, Software Inst, Nanjing 210008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Depth information; discriminative saliency fusion; random forest; saliency detection; salient object segmentation; VISUAL-ATTENTION; IMAGE; MODEL; MAXIMIZATION; EXTRACTION;
D O I
10.1109/TIP.2017.2711277
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel depth-aware salient object detection and segmentation framework via multiscale discriminative saliency fusion (MDSF) and bootstrap learning for RGBD images (RGB color images with corresponding Depth maps) and stereoscopic images. By exploiting low-level feature contrasts, mid-level feature weighted factors and high-level location priors, various saliency measures on four classes of features are calculated based on multiscale region segmentation. A random forest regressor is learned to perform the discriminative saliency fusion (DSF) and generate the DSF saliency map at each scale, and DSF saliency maps across multiple scales are combined to produce the MDSF saliency map. Furthermore, we propose an effective bootstrap learning-based salient object segmentation method, which is bootstrapped with samples based on the MDSF saliency map and learns multiple kernel support vector machines. Experimental results on two large datasets show how various categories of features contribute to the saliency detection performance and demonstrate that the proposed framework achieves the better performance on both saliency detection and salient object segmentation.
引用
收藏
页码:4204 / 4216
页数:13
相关论文
共 50 条
  • [1] DEPTH-AWARE SALIENCY DETECTION USING DISCRIMINATIVE SALIENCY FUSION
    Song, Hangke
    Liu, Zhi
    Du, Huan
    Sun, Guangling
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1626 - 1630
  • [2] Salient object segmentation based on depth-aware image layering
    Du, Huan
    Liu, Zhi
    Shi, Ran
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (09) : 12125 - 12138
  • [3] Salient object segmentation based on depth-aware image layering
    Huan Du
    Zhi Liu
    Ran Shi
    [J]. Multimedia Tools and Applications, 2019, 78 : 12125 - 12138
  • [4] DEPTH-AWARE OBJECT INSTANCE SEGMENTATION
    Ye, Linwei
    Liu, Zhi
    Wang, Yang
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 325 - 329
  • [5] Salient Object Detection via Bootstrap Learning
    Tong, Na
    Lu, Huchuan
    Ruan, Xiang
    Yang, Ming-Hsuan
    [J]. 2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 1884 - 1892
  • [6] Depth-aware lightweight network for RGB-D salient object detection
    Ling, Liuyi
    Wang, Yiwen
    Wang, Chengjun
    Xu, Shanyong
    Huang, Yourui
    [J]. IET IMAGE PROCESSING, 2023, 17 (08) : 2350 - 2361
  • [7] Depth-aware salient object detection using anisotropic center-surround difference
    Ju, Ran
    Liu, Yang
    Ren, Tongwei
    Ge, Ling
    Wu, Gangshan
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2015, 38 : 115 - 126
  • [8] Depth-aware inverted refinement network for RGB-D salient object detection
    Gao, Lina
    Liu, Bing
    Fu, Ping
    Xu, Mingzhu
    [J]. NEUROCOMPUTING, 2023, 518 : 507 - 522
  • [9] Depth quality-aware selective saliency fusion for RGB-D image salient object detection
    Wang, Xuehao
    Li, Shuai
    Chen, Chenglizhao
    Hao, Aimin
    Qin, Hong
    [J]. NEUROCOMPUTING, 2021, 432 : 44 - 56
  • [10] Depth quality-aware selective saliency fusion for RGB-D image salient object detection
    Wang, Xuehao
    Li, Shuai
    Chen, Chenglizhao
    Hao, Aimin
    Qin, Hong
    [J]. Neurocomputing, 2021, 432 : 44 - 56