On the ultrafilter semigroup of a topological group

被引:6
|
作者
Zelenyuk, Yevhen [1 ]
机构
[1] Univ Witwatersrand, Sch Math, ZA-2050 Wits, South Africa
关键词
ultrafilter semigroup; topological group; Stone-Cech compactification; P-point; Bohr compactification;
D O I
10.1007/s00233-006-0607-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ultrafilter semigroup Ult(G) of a topological group G consists of all nonprincipal ultrafilters on G converging to the identity and is a closed subsemigroup in the Stone-Cech compactification beta G(d) of G as a discrete semigroup. We show that it is consistent with ZFC that for every countable nondiscrete topological group G, Ult(G) can be partitioned into closed right ideals each of which admits a continuous homomorphism onto the Bohr compactification of the integers.
引用
收藏
页码:301 / 307
页数:7
相关论文
共 50 条
  • [41] INVARIANCE ENTROPY FOR TOPOLOGICAL SEMIGROUP ACTIONS
    Colonius, Fritz
    Fukuoka, Ryuichi
    Santana, Alexandre J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (12) : 4411 - 4423
  • [42] On the topological center of a Banach algebra related to a foundation topological semigroup
    Maghsoudi, Saeid
    Nasr-Isfahani, Rasoul
    SEMIGROUP FORUM, 2012, 84 (01) : 33 - 38
  • [43] On the topological center of a Banach algebra related to a foundation topological semigroup
    Saeid Maghsoudi
    Rasoul Nasr-Isfahani
    Semigroup Forum, 2012, 84 : 33 - 38
  • [44] On the semigroup rank of a group
    Mário J. J. Branco
    Gracinda M. S. Gomes
    Pedro V. Silva
    Semigroup Forum, 2019, 99 : 568 - 578
  • [45] SEMIGROUP AND GROUP PRESENTATIONS
    CAMPBELL, CM
    ROBERTSON, EF
    RUSKUC, N
    THOMAS, RM
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 : 46 - 50
  • [46] EMBEDDING A SEMIGROUP IN A GROUP
    OSONDU, KE
    TAMARI, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A5 - A5
  • [47] On Embedding a Semigroup in a Group
    Rao, J. Madhusudana
    Ramakrishna, A. V.
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2014, 19 (08): : 740 - 752
  • [48] SEMIGROUP OF GROUP MANIFOLDS
    SHMELKIN, AL
    DOKLADY AKADEMII NAUK SSSR, 1963, 149 (03): : 543 - &
  • [49] WHEN A SEMIGROUP IS A GROUP
    SCHREINE.EA
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (05): : 558 - &
  • [50] CONDITION FOR A SEMIGROUP TO BE A GROUP
    BARRY, P
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (10): : 653 - 654