Two-steps electrochemical polishing of laser powder bed fusion 316l stainless steel

被引:3
|
作者
Zhu, Haitao [1 ]
Rennie, Allan [1 ]
Li, Ruifeng [2 ]
Tian, Yingtao [1 ]
机构
[1] Univ Lancaster, Sch Engn, Lancaster LA1 4YW, England
[2] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
Laser powder bed fusion; Additive manufacturing; 316L stainless steel; Electrochemical polishing; Areal roughness; SURFACE; ROUGHNESS;
D O I
10.1016/j.surfin.2022.102442
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Laser Powder Bed Fusion fabricated 316L stainless steel test components were electrochemically polished in a non-aqueous electrolytic solution consisting of 1M sodium chloride, ethylene glycol, and 10% ethanol, and in an aqueous commercial electrolyte A2. The influence of the high current densities ranging between 250 and 2000 mA/cm(2) on the surface roughness (Psa, Wsa and Ssa), materials removal weight and thickness reduction with various morphological characteristics were investigated. It is confirmed that polishing at the tranpassive region was feasible in non-aqueous electrolytes where little pitting occurred. A two-step electrochemical process was proposed based on the characterisations to enhance the polishing effect, which consisted of two processes with different electrolytes and current densities. The experimental results indicated that the surface roughness of two-step polished steels with 1500 and 250 mA/cm(2) current densities was reduced by 11.25% than the optimum result of the one-step EP with the non-aqueous electrolyte solution. The weight and thickness reduction were reduced by 3.39% and 9.02%, respectively, more than the optimum results of the one-step EP with the aqueous commercial electrolyte.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Improvement on surface quality of 316L stainless steel fabricated by laser powder bed fusion via electrochemical polishing in NaNO3 solution
    An, Linchao
    Wang, Dengyong
    Zhu, Di
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 83 : 325 - 338
  • [22] Improvement on surface quality of 316L stainless steel fabricated by laser powder bed fusion via electrochemical polishing in NaNO3 solution
    An, Linchao
    Wang, Dengyong
    Zhu, Di
    Journal of Manufacturing Processes, 2022, 83 : 325 - 338
  • [23] Predictive models for fatigue property of laser powder bed fusion stainless steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Wei, Jun
    Hardacre, David
    Li, Hua
    MATERIALS & DESIGN, 2018, 145 : 42 - 54
  • [24] Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L
    Crisafulli, Davide
    Fintova, Stanislava
    Santonocito, Dario
    D'Andrea, Danilo
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 131
  • [25] A Comparative Study on Laser Powder Bed Fusion of Differently Atomized 316L Stainless Steel
    Grzelak, Krzysztof
    Bielecki, Marcin
    Kluczynski, Janusz
    Szachogluchowicz, Ireneusz
    Sniezek, Lucjan
    Torzewski, Janusz
    Luszczek, Jakub
    Sloboda, Lukasz
    Wachowski, Marcin
    Komorek, Zenon
    Malek, Marcin
    Zygmuntowicz, Justyna
    MATERIALS, 2022, 15 (14)
  • [26] Evolution of 316L stainless steel feedstock due to laser powder bed fusion process
    Heiden, Michael J.
    Deibler, Lisa A.
    Rodelas, Jeff M.
    Koepke, Josh R.
    Tung, Dan J.
    Saiz, David J.
    Jared, Bradley H.
    ADDITIVE MANUFACTURING, 2019, 25 : 84 - 103
  • [27] UNIAXIAL CREEP PROPERTIES OF 316L STAINLESS STEEL MANUFACTURED BY LASER POWDER BED FUSION
    Sandmann, Paul
    Milne, Amy J.
    Davies, Catrin M.
    PROCEEDINGS OF ASME 2023 PRESSURE VESSELS & PIPING CONFERENCE, PVP2023, VOL 5, 2023,
  • [28] Deuterium permeation and retention in 316L Stainless Steel Manufactured by Laser Powder Bed Fusion
    Hu, Xunxiang
    Lach, Timothy G.
    Terrani, Kurt A.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 548
  • [29] Transverse varestraint weldability testing in laser powder bed fusion 316L stainless steel
    Jhoan Guzman
    Kaue C. Riffel
    Jacque W. Berkson
    Samuel Casto
    Antonio J. Ramirez
    Welding in the World, 2025, 69 (4) : 1045 - 1056
  • [30] Investigation of the strengthening mechanism in 316L stainless steel produced with laser powder bed fusion
    Riabov, D.
    Leicht, A.
    Ahlstrom, J.
    Hryha, E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 822 (822):