Two-steps electrochemical polishing of laser powder bed fusion 316l stainless steel

被引:3
|
作者
Zhu, Haitao [1 ]
Rennie, Allan [1 ]
Li, Ruifeng [2 ]
Tian, Yingtao [1 ]
机构
[1] Univ Lancaster, Sch Engn, Lancaster LA1 4YW, England
[2] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
Laser powder bed fusion; Additive manufacturing; 316L stainless steel; Electrochemical polishing; Areal roughness; SURFACE; ROUGHNESS;
D O I
10.1016/j.surfin.2022.102442
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Laser Powder Bed Fusion fabricated 316L stainless steel test components were electrochemically polished in a non-aqueous electrolytic solution consisting of 1M sodium chloride, ethylene glycol, and 10% ethanol, and in an aqueous commercial electrolyte A2. The influence of the high current densities ranging between 250 and 2000 mA/cm(2) on the surface roughness (Psa, Wsa and Ssa), materials removal weight and thickness reduction with various morphological characteristics were investigated. It is confirmed that polishing at the tranpassive region was feasible in non-aqueous electrolytes where little pitting occurred. A two-step electrochemical process was proposed based on the characterisations to enhance the polishing effect, which consisted of two processes with different electrolytes and current densities. The experimental results indicated that the surface roughness of two-step polished steels with 1500 and 250 mA/cm(2) current densities was reduced by 11.25% than the optimum result of the one-step EP with the non-aqueous electrolyte solution. The weight and thickness reduction were reduced by 3.39% and 9.02%, respectively, more than the optimum results of the one-step EP with the aqueous commercial electrolyte.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel
    Metalnikov, Polina
    Ben-Hamu, Guy
    Eliezer, Dan
    METALS, 2022, 12 (10)
  • [2] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [3] Influence of laser polishing on fatigue life of conventionally machined and laser powder bed fusion 316L stainless steel
    Faue, P. J.
    Beste, V
    Richter, B.
    Agrawal, A.
    Klingbeil, K.
    Thoma, D.
    Radel, T.
    Pfefferkorn, F. E.
    MANUFACTURING LETTERS, 2022, 33 : 670 - 677
  • [4] Influence of laser polishing on fatigue life of conventionally machined and laser powder bed fusion 316L stainless steel
    Faue P.J.
    Beste L.-H.
    Richter B.
    Agrawal A.
    Klingbeil K.
    Thoma D.
    Radel T.
    Pfefferkorn F.E.
    Manufacturing Letters, 2022, 33 : 670 - 677
  • [5] Laser Powder Bed Fusion of 316L Stainless Steel: Effect of Laser Polishing on the Surface Morphology and Corrosion Behavior
    Liu, Jun
    Ma, Haojun
    Meng, Lingjian
    Yang, Huan
    Yang, Can
    Ruan, Shuangchen
    Ouyang, Deqin
    Mei, Shuwen
    Deng, Leimin
    Chen, Jie
    Cao, Yu
    MICROMACHINES, 2023, 14 (04)
  • [6] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    Materials Science and Engineering: A, 2021, 802
  • [7] Influence of laser polishing on fatigue life of conventionally machined and laser powder bed fusion 316L stainless steel
    Faue, P. J.
    Beste, L. H.
    Richter, B.
    Agrawal, A.
    Klingbeil, K.
    Thoma, D.
    Radel, T.
    Pfefferkorn, F. E.
    MANUFACTURING LETTERS, 2022, 33 : 670 - 677
  • [8] Surface Finish Analysis of Gradient Voltage Electrochemical Polishing of 316L Stainless Steel Parts Forming by Laser Powder Bed Fusion
    Wu, Wenzheng
    Wang, Jiaqi
    Liu, Qingping
    Li, Xuechao
    Zhou, Yiming
    Zheng, Aodu
    Ren, Luquan
    Li, Guiwei
    3D PRINTING AND ADDITIVE MANUFACTURING, 2024, 11 (02) : e801 - e811
  • [9] Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L
    Kurdi, Abdulaziz
    Tabbakh, Thamer
    Basak, Animesh Kumar
    MATERIALS, 2023, 16 (17)
  • [10] Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process
    Kascak, Lubos
    Varga, Jan
    Bidulska, Jana
    Bidulsky, Robert
    MATERIALS, 2023, 16 (24)