Algorithms for generalized numerical semigroups

被引:10
|
作者
Cisto, Carmelo [1 ]
Delgado, Manuel [2 ]
Garcia-Sanchez, Pedro A. [3 ,4 ]
机构
[1] Univ Messina, Sci Fis & Sci Terra, Dipartimento Sci Matemat & Informat, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
[2] Univ Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[3] Univ Granada, Dept Algebra, Granada 18017, Spain
[4] Univ Granada, IEMath GR, Granada 18017, Spain
关键词
Generalized numerical semigroup; gaps; minimal generators; genus; NUMBER;
D O I
10.1142/S0219498821500791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide algorithms for performing computations in generalized numerical semigroups, that is, submonoids of N-d with finite complement in N-d. These semigroups are affine semigroups, which in particular implies that they are finitely generated. For a given finite set of elements in N-d we show how to deduce if the monoid spanned by this set is a generalized numerical semigroup and, if so, we calculate its set of gaps. Also, given a finite set of elements in N-d we can determine if it is the set of gaps of a generalized numerical semigroup and, if so, compute the minimal generators of this monoid. We provide a new algorithm to compute the set of all generalized numerical semigroups with a prescribed genus (the cardinality of their sets of gaps). Its implementation allowed us to compute (for various dimensions) the number of numerical semigroups of higher genus than has previously been computed.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Generalized state machines and generalized transformation semigroups
    Kim, Youn-Hee
    Kim, Jae-Gyeom
    Korean Journal of Computational & Applied Mathematics, 1999, 6 (02): : 365 - 384
  • [42] Problems and algorithms for affine semigroups
    Winfried Bruns
    Joseph Gubeladze
    Ngô Viêt Trung
    Semigroup Forum, 2002, 64 : 180 - 212
  • [43] Problems and algorithms for affine semigroups
    Bruns, W
    Gubeladze, J
    Trung, NV
    SEMIGROUP FORUM, 2002, 64 (02) : 180 - 212
  • [44] Sparse Numerical Semigroups
    Munuera, C.
    Torres, F.
    Villanueva, J.
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 23 - +
  • [45] Arf numerical semigroups
    Rosales, JC
    García-Sánchez, PA
    García-García, JI
    Branco, MB
    JOURNAL OF ALGEBRA, 2004, 276 (01) : 3 - 12
  • [46] Patterns on numerical semigroups
    Bras-Amorós, M
    García-Sánchez, PA
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (2-3) : 652 - 669
  • [47] A note on numerical semigroups
    Bras-Amoros, Maria
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (02) : 821 - 823
  • [48] Homogeneous numerical semigroups
    Raheleh Jafari
    Santiago Zarzuela Armengou
    Semigroup Forum, 2018, 97 : 278 - 306
  • [49] Balanced numerical semigroups
    Thompson, Jeremy
    Herzinger, Kurt
    Holcomb, Trae
    SEMIGROUP FORUM, 2017, 94 (03) : 632 - 649
  • [50] Triangular Numerical Semigroups
    Neto, Ana Margarida
    Iglesias, Laura
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04): : 1262 - 1267