Intermolecular On-Surface σ-Bond Metathesis

被引:52
|
作者
Gao, Hong-Ying [1 ,2 ]
Held, Philipp Alexander [3 ]
Amirjalayer, Saeed [1 ,2 ,4 ]
Liu, Lacheng [1 ,2 ]
Timmer, Alexander [1 ,2 ]
Schirmer, Birgitta [3 ,4 ]
Arado, Oscar Diaz [1 ,2 ]
Moenig, Harry [1 ,2 ]
Mueck-Lichtenfeld, Christian [3 ,4 ]
Neugebauer, Johannes [3 ,4 ]
Studer, Armido [3 ]
Fuchs, Harald [1 ,2 ,4 ]
机构
[1] Ctr Nanotechnol, Heisenbergstr 11, D-48149 Munster, Germany
[2] Westfal Wilhelms Univ, Phys Inst, Wilhelm Klemm Str 10, D-48149 Munster, Germany
[3] Westfal Wilhelms Univ, Organ Chem Inst, Corrensstr 40, D-48149 Munster, Germany
[4] Westfal Wilhelms Univ, Ctr Multiscale Theory & Computat, Corrensstr 40, D-48149 Munster, Germany
关键词
COVALENT ORGANIC FRAMEWORKS; GRAPHENE NANORIBBON HETEROJUNCTIONS; AZIDE-ALKYNE CYCLOADDITION; METAL-SURFACES; ULTRAHIGH-VACUUM; AU(111); POLYMERIZATION; NANOSTRUCTURES; CHEMISTRY; SILICON;
D O I
10.1021/jacs.7b02430
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silylation and desilylation are important functional group manipulations in solution-phase organic chemistry that are heavily used to protect/deprotect different functionalities. Herein, we disclose the first examples of the sigma-bond metathesis of silylated alkynes with aromatic carboxylic acids on the Ag(111) and Au(111) surfaces to give the corresponding terminal alkynes and silyl esters, which is supported by density functional theory calculations and further confirmed by X-ray photoelectron spectroscopy analysis. Such a protecting group strategy applied to on-surface chemistry allows self-assembly structures to be generated from molecules that are inherently unstable in solution and in the solid state. This is shown by the successful formation of self-assembled hexaethynylbenzene at Ag(111). Furthermore, it is also shown that on the Au(111) surface this sigma-bond metathesis can be combined with Glaser coupling to fabricate covalent polymers via a cascade process.
引用
收藏
页码:7012 / 7019
页数:8
相关论文
共 50 条
  • [21] On-surface synthesis of enetriynes
    Cao, Nan
    Yang, Biao
    Riss, Alexander
    Rosen, Johanna
    Bjork, Jonas
    Barth, Johannes V.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [22] Covalent on-surface polymerization
    Leonhard Grill
    Stefan Hecht
    Nature Chemistry, 2020, 12 : 115 - 130
  • [23] Decacene: On-Surface Generation
    Krueger, Justus
    Garcia, Fatima
    Eisenhut, Frank
    Skidin, Dmitry
    Alonso, Jose M.
    Guitian, Enrique
    Perez, Dolores
    Cuniberti, Gianaurelio
    Moresco, Francesca
    Pena, Diego
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (39) : 11945 - 11948
  • [24] Visualization of on-surface polymerization
    Lifeng Chi
    ScienceChina(Materials), 2022, 65 (07) : 1989 - 1990
  • [25] Super on-surface synthesis
    Claire Ashworth
    Nature Reviews Chemistry, 2022, 6 : 241 - 241
  • [26] On-surface synthesis - there will be light
    Lackinger, Markus
    TRENDS IN CHEMISTRY, 2022, 4 (06): : 471 - 474
  • [27] On-surface synthesis of polyethylenedioxythiophene
    Di Bernardo, Iolanda
    Hines, Peter
    Abyazisani, Maryam
    Motta, Nunzio
    MacLeod, Jennifer
    Lipton-Duffin, Josh
    CHEMICAL COMMUNICATIONS, 2018, 54 (30) : 3723 - 3726
  • [28] On-surface synthesis of enetriynes
    Nan Cao
    Biao Yang
    Alexander Riss
    Johanna Rosen
    Jonas Björk
    Johannes V. Barth
    Nature Communications, 14
  • [29] Emergence of On-Surface Magnetochemistry
    Ballav, Nirmalya
    Waeckerlin, Christian
    Siewert, Dorota
    Oppeneer, Peter M.
    Jung, Thomas A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (14): : 2303 - 2311
  • [30] On-surface synthesis on a bulk insulator surface
    Richter, Antje
    Floris, Andrea
    Bechstein, Ralf
    Kantorovich, Lev
    Kuehnle, Angelika
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (13)