Critical behavior of the Ising model on the four-dimensional cubic lattice

被引:43
|
作者
Lundow, P. H. [1 ]
Markstrom, K. [2 ]
机构
[1] KTH, Dept Theoret Phys, SE-10691 Stockholm, Sweden
[2] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 03期
关键词
D O I
10.1103/PhysRevE.80.031104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we investigate the nature of the singularity of the Ising model of the four-dimensional cubic lattice. It is rigorously known that the specific heat has critical exponent alpha = 0 but a nonrigorous field-theory argument predicts an unbounded specific heat with a logarithmic singularity at T-c. We find that within the given accuracy the canonical ensemble data are consistent both with a logarithmic singularity and a bounded specific heat but that the microcanonical ensemble lends stronger support to a bounded specific heat. Our conclusion is that either much larger system sizes are needed for Monte Carlo studies of this model in four dimensions or the field-theory prediction of a logarithmic singularity is wrong.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] The Finite-Size Scaling Functions of the Four-Dimensional Ising Model
    N. Aktekin
    [J]. Journal of Statistical Physics, 2001, 104 : 1397 - 1406
  • [22] Critical behavior of a cubic-lattice 3D Ising model for systems with quenched disorder
    A. K. Murtazaev
    I. K. Kamilov
    A. B. Babaev
    [J]. Journal of Experimental and Theoretical Physics, 2004, 99 : 1201 - 1206
  • [23] Critical behavior of a cubic-lattice 3D Ising model for systems with quenched disorder
    Murtazaev, AK
    Kamilov, IK
    Babaev, AB
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 99 (06) : 1201 - 1206
  • [24] On the Ising model for the simple cubic lattice
    Haggkvist, R.
    Rosengren, A.
    Lundow, P. H.
    Markstrom, K.
    Andren, D.
    Kundrotas, P.
    [J]. ADVANCES IN PHYSICS, 2007, 56 (05) : 653 - 755
  • [25] Multibody failure criterion for the four-dimensional lattice spring model
    Zhao, Gao-Feng
    Deng, Zhi-Qiang
    Zhang, Ben
    [J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2019, 123
  • [26] PROGRESS IN FOUR-DIMENSIONAL LATTICE SUPERSYMMETRY
    Giedt, Joel
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (22): : 4045 - 4095
  • [27] Lattice Points in the Four-Dimensional Ball
    Fomenko O.M.
    [J]. Journal of Mathematical Sciences, 2018, 234 (5) : 750 - 757
  • [28] An exact percolation point of surface filling in a four-dimensional hyper-cubic lattice
    Miyazima, S
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2005, 113 (06): : 1159 - 1163
  • [29] Behavior of Trajectories of a Four-Dimensional Model of HIV Infection
    A. N. Kanatnikov
    O. S. Tkacheva
    [J]. Differential Equations, 2023, 59 : 1451 - 1462
  • [30] Behavior of Trajectories of a Four-Dimensional Model of HIV Infection
    Kanatnikov, A. N.
    Tkacheva, O. S.
    [J]. DIFFERENTIAL EQUATIONS, 2023, 59 (11) : 1451 - 1462