Critical behavior of the Ising model on the four-dimensional cubic lattice

被引:45
|
作者
Lundow, P. H. [1 ]
Markstrom, K. [2 ]
机构
[1] KTH, Dept Theoret Phys, SE-10691 Stockholm, Sweden
[2] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 03期
关键词
All Open Access; Green;
D O I
10.1103/PhysRevE.80.031104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we investigate the nature of the singularity of the Ising model of the four-dimensional cubic lattice. It is rigorously known that the specific heat has critical exponent alpha = 0 but a nonrigorous field-theory argument predicts an unbounded specific heat with a logarithmic singularity at T-c. We find that within the given accuracy the canonical ensemble data are consistent both with a logarithmic singularity and a bounded specific heat but that the microcanonical ensemble lends stronger support to a bounded specific heat. Our conclusion is that either much larger system sizes are needed for Monte Carlo studies of this model in four dimensions or the field-theory prediction of a logarithmic singularity is wrong.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Logarithmic finite-size scaling of the four-dimensional Ising model
    Li, Zhiyi
    Xiao, Tianning
    Zhou, Zongzheng
    Fang, Sheng
    Deng, Youjin
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [22] Numerical study of the transition of the four-dimensional random field Ising model
    Sacconi, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16): : 3751 - 3758
  • [23] The Finite-Size Scaling Functions of the Four-Dimensional Ising Model
    N. Aktekin
    Journal of Statistical Physics, 2001, 104 : 1397 - 1406
  • [24] Critical behavior of a cubic-lattice 3D Ising model for systems with quenched disorder
    A. K. Murtazaev
    I. K. Kamilov
    A. B. Babaev
    Journal of Experimental and Theoretical Physics, 2004, 99 : 1201 - 1206
  • [25] Critical behavior of a cubic-lattice 3D Ising model for systems with quenched disorder
    Murtazaev, AK
    Kamilov, IK
    Babaev, AB
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 99 (06) : 1201 - 1206
  • [26] On the Ising model for the simple cubic lattice
    Haggkvist, R.
    Rosengren, A.
    Lundow, P. H.
    Markstrom, K.
    Andren, D.
    Kundrotas, P.
    ADVANCES IN PHYSICS, 2007, 56 (05) : 653 - 755
  • [27] On the four-dimensional lattice spring model for geomechanics附视频
    GaoFeng Zhao
    Xiaodong Hu
    Qin Li
    Jijian Lian
    Guowei Ma
    Journal of Rock Mechanics and Geotechnical Engineering, 2018, (04) : 661 - 668
  • [28] Multibody failure criterion for the four-dimensional lattice spring model
    Zhao, Gao-Feng
    Deng, Zhi-Qiang
    Zhang, Ben
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2019, 123
  • [29] Lattice Points in the Four-Dimensional Ball
    Fomenko O.M.
    Journal of Mathematical Sciences, 2018, 234 (5) : 750 - 757
  • [30] PROGRESS IN FOUR-DIMENSIONAL LATTICE SUPERSYMMETRY
    Giedt, Joel
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (22): : 4045 - 4095