Critical behavior of the Ising model on the four-dimensional cubic lattice

被引:43
|
作者
Lundow, P. H. [1 ]
Markstrom, K. [2 ]
机构
[1] KTH, Dept Theoret Phys, SE-10691 Stockholm, Sweden
[2] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 03期
关键词
D O I
10.1103/PhysRevE.80.031104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we investigate the nature of the singularity of the Ising model of the four-dimensional cubic lattice. It is rigorously known that the specific heat has critical exponent alpha = 0 but a nonrigorous field-theory argument predicts an unbounded specific heat with a logarithmic singularity at T-c. We find that within the given accuracy the canonical ensemble data are consistent both with a logarithmic singularity and a bounded specific heat but that the microcanonical ensemble lends stronger support to a bounded specific heat. Our conclusion is that either much larger system sizes are needed for Monte Carlo studies of this model in four dimensions or the field-theory prediction of a logarithmic singularity is wrong.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Dynamical critical behavior of the four-dimensional Ising model
    Adler, J
    Stauffer, D
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1995, 6 (06): : 807 - 812
  • [2] CRITICAL BEHAVIOR OF AN ISING-MODEL ON A CUBIC COMPRESSIBLE LATTICE
    BERGMAN, DJ
    HALPERIN, BI
    [J]. PHYSICAL REVIEW B, 1976, 13 (05): : 2145 - 2175
  • [3] Critical properties of the three-dimensional frustrated ising model on a cubic lattice
    Murtazaev, AK
    Kamilov, IK
    Ramazanov, MK
    [J]. PHYSICS OF THE SOLID STATE, 2005, 47 (06) : 1163 - 1168
  • [4] Critical properties of the three-dimensional frustrated Ising model on a cubic lattice
    A. K. Murtazaev
    I. K. Kamilov
    M. K. Ramazanov
    [J]. Physics of the Solid State, 2005, 47 : 1163 - 1168
  • [5] The Skyrme model on a four-dimensional lattice
    Li, K
    Wong, SSM
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1996, 69 (04): : 699 - 704
  • [6] Revising the universality class of the four-dimensional Ising model
    Lundow, P. H.
    Markstrom, K.
    [J]. NUCLEAR PHYSICS B, 2023, 993
  • [7] Universality class of the dilute four-dimensional Ising model
    Feldmann, H
    [J]. PHYSICAL REVIEW B, 1997, 56 (13): : 7783 - 7784
  • [8] On the four-dimensional lattice spring model for geomechanics
    Gao-Feng Zhao
    Xiaodong Hu
    Qin Li
    Jijian Lian
    Guowei Ma
    [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10 (04) : 661 - 668
  • [9] On the four-dimensional lattice spring model for geomechanics
    Zhao, Gao-Feng
    Hu, Xiaodong
    Li, Qin
    Lian, Jijian
    Ma, Guowei
    [J]. JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2018, 10 (04) : 661 - 668
  • [10] CRITICAL BEHAVIOR OF COMPRESSIBLE ISING-MODEL ON BODY-CENTERED CUBIC LATTICE
    HOLZ, A
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (05): : 683 - 694