Fast Semantic Segmentation of 3D Point Clouds using a Dense CRF with Learned Parameters

被引:0
|
作者
Wolf, Daniel [1 ]
Prankl, Johann [1 ]
Vincze, Markus [1 ]
机构
[1] Vienna Univ Technol, Automat & Control Inst, Vision4Robot Grp, Vienna, Austria
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present an efficient semantic segmentation framework for indoor scenes operating on 3D point clouds. We use the results of a Random Forest Classifier to initialize the unary potentials of a densely interconnected Conditional Random Field, for which we learn the parameters for the pairwise potentials from training data. These potentials capture and model common spatial relations between class labels, which can often be observed in indoor scenes. We evaluate our approach on the popular NYU Depth datasets, for which it achieves superior results compared to the current state of the art. Exploiting parallelization and applying an efficient CRF inference method based on mean field approximation, our framework is able to process full resolution Kinect point clouds in half a second on a regular laptop, more than twice as fast as comparable methods.
引用
收藏
页码:4867 / 4873
页数:7
相关论文
共 50 条
  • [31] Augmented Edge Graph Convolutional Networks for Semantic Segmentation of 3D Point Clouds
    Zhang Lujian
    Bi Yuanwei
    Liu Yaowen
    Huang Yansen
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [32] Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds
    Michele, Bjorn
    Boulch, Alexandre
    Puy, Gilles
    Bucher, Maxime
    Marlet, Renaud
    [J]. 2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, : 992 - 1002
  • [33] A DENSE POINTNET plus plus ARCHITECTURE FOR 3D POINT CLOUD SEMANTIC SEGMENTATION
    Lian, Yanchao
    Feng, Tuo
    Zhou, Jinliu
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5061 - 5064
  • [34] 3D-MiniNet: Learning a 2D Representation From Point Clouds for Fast and Efficient 3D LIDAR Semantic Segmentation
    Alonso, Inigo
    Riazuelo, Luis
    Montesano, Luis
    Murillo, Ana C.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 5432 - 5439
  • [35] Sweet Pepper Leaf Area Estimation Using Semantic 3D Point Clouds Based on Semantic Segmentation Neural Network
    Giang, Truong Thi Huong
    Ryoo, Young-Jae
    [J]. AGRIENGINEERING, 2024, 6 (01): : 645 - 656
  • [36] 3D Object Segmentation of Point Clouds using Profiling Techniques
    Sithole, G.
    Mapurisa, W. T.
    [J]. SOUTH AFRICAN JOURNAL OF GEOMATICS, 2012, 1 (01): : 60 - 76
  • [37] Semantic Labeling and Instance Segmentation of 3D Point Clouds Using Patch Context Analysis and Multiscale Processing
    Hu, Shi-Min
    Cai, Jun-Xiong
    Lai, Yu-Kun
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (07) : 2485 - 2498
  • [38] Semantic segmentation of large-scale segmental lining point clouds using 3D deep learning
    Lin, Wei
    Sheil, Brian
    Xie, Xiongyao
    Zhang, Yangbin
    Cao, Yuyang
    [J]. GEOSHANGHAI INTERNATIONAL CONFERENCE 2024, VOL 8, 2024, 1337
  • [39] 2D TO 3D LABEL PROPAGATION FOR THE SEMANTIC SEGMENTATION OF HERITAGE BUILDING POINT CLOUDS
    Pellis, E.
    Murtiyoso, A.
    Masiero, A.
    Tucci, G.
    Betti, M.
    Grussenmeyer, P.
    [J]. XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 861 - 867
  • [40] SoftGroup for 3D Instance Segmentation on Point Clouds
    Thang Vu
    Kim, Kookhoi
    Luu, Tung M.
    Thanh Nguyen
    Yoo, Chang D.
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2698 - 2707