Fast Semantic Segmentation of 3D Point Clouds using a Dense CRF with Learned Parameters

被引:0
|
作者
Wolf, Daniel [1 ]
Prankl, Johann [1 ]
Vincze, Markus [1 ]
机构
[1] Vienna Univ Technol, Automat & Control Inst, Vision4Robot Grp, Vienna, Austria
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present an efficient semantic segmentation framework for indoor scenes operating on 3D point clouds. We use the results of a Random Forest Classifier to initialize the unary potentials of a densely interconnected Conditional Random Field, for which we learn the parameters for the pairwise potentials from training data. These potentials capture and model common spatial relations between class labels, which can often be observed in indoor scenes. We evaluate our approach on the popular NYU Depth datasets, for which it achieves superior results compared to the current state of the art. Exploiting parallelization and applying an efficient CRF inference method based on mean field approximation, our framework is able to process full resolution Kinect point clouds in half a second on a regular laptop, more than twice as fast as comparable methods.
引用
收藏
页码:4867 / 4873
页数:7
相关论文
共 50 条
  • [1] Semantic Segmentation of Geometric Primitives in Dense 3D Point Clouds
    Stanescu, Ana
    Fleck, Philipp
    Schmalstieg, Dieter
    Arth, Clemens
    [J]. ADJUNCT PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR), 2018, : 206 - 211
  • [2] FAST SEMANTIC SEGMENTATION OF 3D POINT CLOUDS WITH STRONGLY VARYING DENSITY
    Hackel, Timo
    Wegner, Jan D.
    Schindler, Konrad
    [J]. XXIII ISPRS CONGRESS, COMMISSION III, 2016, 3 (03): : 177 - 184
  • [3] Dense Supervision Propagation for Weakly Supervised Semantic Segmentation on 3D Point Clouds
    Wei, Jiacheng
    Lin, Guosheng
    Yap, Kim-Hui
    Liu, Fayao
    Hung, Tzu-Yi
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 4367 - 4377
  • [4] SEGCloud: Semantic Segmentation of 3D Point Clouds
    Tchapmi, Lyne P.
    Choy, Christopher B.
    Armeni, Iro
    Gwak, JunYoung
    Savarese, Silvio
    [J]. PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 537 - 547
  • [5] DeepLabV3-Refiner-Based Semantic Segmentation Model for Dense 3D Point Clouds
    Kwak, Jeonghoon
    Sung, Yunsick
    [J]. REMOTE SENSING, 2021, 13 (08)
  • [6] Point attention network for semantic segmentation of 3D point clouds
    Feng, Mingtao
    Zhang, Liang
    Lin, Xuefei
    Gilani, Syed Zulqarnain
    Mian, Ajmal
    [J]. PATTERN RECOGNITION, 2020, 107 (107)
  • [7] GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
    Zhang, Zihui
    Yang, Bo
    Wang, Bing
    Li, Bo
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17619 - 17629
  • [8] Fast Segmentation of 3D Point Clouds for Ground Vehicles
    Himmelsbach, M.
    v. Hundelshausen, Felix
    Wuensche, H. -J.
    [J]. 2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, : 560 - 565
  • [9] SEMANTIC ENRICHMENT OF 3D POINT CLOUDS USING 2D IMAGE SEGMENTATION
    Rai, A.
    Srivastava, N.
    Khoshelham, K.
    Jain, K.
    [J]. GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 1659 - 1666
  • [10] Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds
    Engelmann, Francis
    Kontogianni, Theodora
    Hermans, Alexander
    Leibe, Bastian
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 716 - 724