Semi-analytical finite element method for bilinear cohesive crack model in modelcrack propagation

被引:0
|
作者
Wang, Chengqiang [1 ]
Chen, Zhonghua [1 ]
Zheng, Changliang [2 ]
机构
[1] Nanjing Hydraul Res Inst, Nanjing 210029, Peoples R China
[2] Dalian Maritime Univ, Electromech & Mat Engn Coll, Dalian 116026, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
crack propagation; cohesive force; concrete fracture; semi-analytical FEM;
D O I
10.4028/www.scientific.net/KEM.324-325.755
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on the Hamiltonian theory and method of elasticity, a ring and a circular hyper-analytical-elements are constructed and formulated. The hyper-analytical-elements give a precise description of the displacement and stress fields in the vicinity of crack tip for the bilinear cohesive crack model. The new analytical element can be implemented into finite element method program systems to solve crack propagation problems for plane structures with arbitrary shapes and loads. Numerical results for typical problems show that the method is simple, efficient and accurate.
引用
收藏
页码:755 / +
页数:2
相关论文
共 50 条
  • [21] Semi-analytical finite element method applied for characterizing micropolar fibrous composites
    J. A. Otero
    Y. Espinosa-Almeyda
    R. Rodríguez-Ramos
    J. Merodio
    Applied Mathematics and Mechanics, 2024, 45 (12) : 2147 - 2164
  • [22] Semi-analytical finite element method applied for characterizing micropolar fibrous composites
    JAOTERO
    YESPINOSAALMEYDA
    RRODRGUEZRAMOS
    JMERODIO
    Applied Mathematics and Mechanics(English Edition), 2024, 45 (12) : 2147 - 2164
  • [23] Modelling piezoelectric excitation in waveguides using the semi-analytical finite element method
    Kalkowski, Michal K.
    Rustighi, Emiliano
    Waters, Timothy P.
    COMPUTERS & STRUCTURES, 2016, 173 : 174 - 186
  • [24] CONVERGENCE OF THE FINITE ELEMENT METHOD AND THE SEMI-ANALYTICAL FINITE ELEMENT METHOD FOR PRISMATIC BODIES WITH VARIABLE PHYSICAL AND GEOMETRIC PARAMETERS
    Bazhenov, V. A.
    Horbach, M., V
    Martyniuk, I. Yu
    Maksimyuk, O., V
    OPIR MATERIALIV I TEORIA SPORUD-STRENGTH OF MATERIALS AND THEORY OF STRUCTURES, 2021, (106): : 92 - 104
  • [25] Shaft design: A semi-analytical finite element approach
    Munteanu, Mircea Gh.
    De Bona, Francesco
    Bressan, Fabio
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2018, 46 (02) : 184 - 195
  • [26] Transient analysis of leaky Lamb waves with a semi-analytical finite element method
    Inoue, Daisuke
    Hayashi, Takahiro
    ULTRASONICS, 2015, 62 : 80 - 88
  • [27] Dynamic cohesive crack propagation modelling using the scaled boundary finite element method
    Ooi, E. T.
    Yang, Z. J.
    Guo, Z. Y.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2012, 35 (08) : 786 - 800
  • [28] 3D crack propagation with cohesive elements in the extended finite element method
    Ferte, G.
    Massin, P.
    Moes, N.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 300 : 347 - 374
  • [29] An Arnoldi reduction strategy applied to the semi-analytical finite element method to model railway track vibrations
    Cettour-Janet, R.
    Barbarulo, A.
    Letourneaux, F.
    Puel, G.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 116 : 997 - 1016
  • [30] Crack Propagation by Finite Element Method
    Ricardo, Luiz Carlos H.
    FRATTURA ED INTEGRITA STRUTTURALE, 2018, 12 (43): : 57 - 78