Linearized nonadiabatic dynamics in the adiabatic representation

被引:0
|
作者
Coker, D. F. [1 ]
Bonella, S. [2 ]
机构
[1] Boston Univ, Dept Chem, 590 Commonwealth Ave, Boston, MA 02215 USA
[2] NEST, Scuola Normale Superi, IT-56126 Pisa, Italy
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
In this chapter we generalize a recently developed approximate method for computing quantum time correlation functions based on linearizing the phase of path integral expressions for these quantities in terms of the difference between paths representing the forward and backward propagators. The approach is designed with condensed phase applications in mind and involves partitioning the system into two subsystems: One best described by a few discrete quantum states, the other represented as a set of particle positions and momenta. In the original formulation, adiabatic basis was used to describe the quantum subsystem states. Here we extend the technique to allow for a description of the quantum subsystem in terms of adiabatic states. These can be more appropriate in certain dynamical regimes and have the formal advantage that they can be defined uniquely from the electronic Hamitonian. The linearized algorithm in the adiabatic basis is derived first, and its properties are. then compared to those of alternative dynamical schemes.
引用
收藏
页码:321 / +
页数:3
相关论文
共 50 条
  • [31] Semiclassical Nonadiabatic Molecular Dynamics Using Linearized Pair-Density Functional Theory
    Hennefarth, Matthew R.
    Truhlar, Donald G.
    Gagliardi, Laura
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (20) : 8741 - 8748
  • [32] Complementing Adiabatic and Nonadiabatic Methods To Understand Internal Conversion Dynamics in Porphyrin Derivatives
    Rukin, Pavel S.
    Fortino, Mariagrazia
    Prezzi, Deborah
    Rozzi, Carlo Andrea
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (24) : 10759 - 10769
  • [33] Nonadiabatic dynamics in the dark subspace of a multilevel stimulated Raman adiabatic passage process
    Kis, Z
    Stenholm, S
    PHYSICAL REVIEW A, 2001, 64 (06): : 1 - 10
  • [34] The interaction representation and nonadiabatic corrections to adiabatic evolution operators .2. Nonlinear quantum systems
    Schwartz, SD
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (20): : 7985 - 7987
  • [35] Representation of adiabatic potential energy surfaces coupled by conical intersections and their use in describing nonadiabatic processes
    Yarkony, David
    Zhu, Xiaolei
    Dillon, Joseph
    Malbon, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [36] Vortex Tray for Adiabatic and Nonadiabatic Fractionation
    N. A. Voinov
    D. A. Zemtsov
    A. V. Bogatkova
    N. V. Deryagina
    Chemical and Petroleum Engineering, 2021, 57 : 220 - 226
  • [37] Adiabatic and nonadiabatic protection from decoherence
    Pellegrin, S
    Brion, E
    Mewes, C
    Ioffe, LB
    Kurizki, G
    Decoherence, Entanglement and Information Protection in Complex Quantum Systems, 2005, 189 : 129 - 136
  • [38] Nonadiabatic corrections to the adiabatic Efimov potential
    Hahn, Y
    Giraud, BG
    EUROPEAN PHYSICAL JOURNAL A, 1998, 1 (04): : 383 - 390
  • [39] Vortex Tray for Adiabatic and Nonadiabatic Fractionation
    Voinov, N. A.
    Zemtsov, D. A.
    Bogatkova, A. V.
    Deryagina, N. V.
    CHEMICAL AND PETROLEUM ENGINEERING, 2021, 57 (3-4) : 220 - 226
  • [40] Evidence for a continuous transition from nonadiabatic to adiabatic proton transfer dynamics in protic liquids
    Cohen, B
    Huppert, D
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (13): : 2980 - 2988