Limit theorems for the minimal position in a branching random walk with independent logconcave displacements

被引:27
|
作者
Bachmann, M [1 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
关键词
branching random walk; minimal position; age-dependent branching process; first birth time; nonlinear integral operator; travelling wave; extreme value distribution;
D O I
10.1017/S0001867800009824
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a branching random walk in which each particle has a random number (one or more) of offspring particles that are displaced independently of each other according to a logconcave density. Under mild additional assumptions, we obtain the following results: the minimal position in the nth generation, adjusted by its alpha-quantile, converges weakly to a non-degenerate limiting distribution. There also exists a 'conditional limit' of the adjusted minimal position, which has a (Gumbel) extreme value distribution delayed by a random time-lag. Consequently, the unconditional limiting distribution is a mixture of extreme value distributions.
引用
收藏
页码:159 / 176
页数:18
相关论文
共 50 条
  • [1] Limit Theorems for the Minimal Position of a Branching Random Walk in Random Environment
    Zhang, Xiaoyue
    Hou, Wanting
    Hong, Wenming
    [J]. MARKOV PROCESSES AND RELATED FIELDS, 2020, 26 (05) : 839 - 860
  • [2] Limit theorems for a branching random walk in a random or varying environment
    Huang, Chunmao
    Liu, Quansheng
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 172
  • [3] Limit theorems for a minimal random walk model
    Coletti, Cristian F.
    Gava, Renato J.
    de Lima, Lucas R.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [4] CENTRAL LIMIT THEOREMS FOR A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    高志强
    刘全升
    汪和松
    [J]. Acta Mathematica Scientia, 2014, 34 (02) : 501 - 512
  • [5] CENTRAL LIMIT THEOREMS FOR A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    Gao, Zhiqiang
    Liu, Quansheng
    Wang, Hesong
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (02) : 501 - 512
  • [6] Limit Theorems for Local Particle Numbers in Branching Random Walk
    Bulinskaya, E. Vl
    [J]. DOKLADY MATHEMATICS, 2012, 85 (03) : 403 - 405
  • [7] Limit theorems for local particle numbers in branching random walk
    E. Vl. Bulinskaya
    [J]. Doklady Mathematics, 2012, 85 : 403 - 405
  • [8] Limit Theorems for the ‘Laziest’ Minimal Random Walk Model of Elephant Type
    Tatsuya Miyazaki
    Masato Takei
    [J]. Journal of Statistical Physics, 2020, 181 : 587 - 602
  • [9] Limit Theorems for the 'Laziest' Minimal Random Walk Model of Elephant Type
    Miyazaki, Tatsuya
    Takei, Masato
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (02) : 587 - 602
  • [10] Weak convergence for the minimal position in a branching random walk: A simple proof
    Elie Aïdékon
    Zhan Shi
    [J]. Periodica Mathematica Hungarica, 2010, 61 : 43 - 54