Limit Theorems for the Minimal Position of a Branching Random Walk in Random Environment

被引:0
|
作者
Zhang, Xiaoyue [1 ]
Hou, Wanting [2 ]
Hong, Wenming [3 ,4 ]
机构
[1] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[2] Northeastern Univ, Dept Math, Shenyang 110004, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[4] Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
random walk in random environment; branching random walk; branching process; minimal position; DISPLACEMENT; SYSTEM;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a branching system of N-valued random walks with a random environment in location. We will give the exact limit value of M-n/n, where M-n denotes the minimal position of the branching random walk at time n. A key step in the proof is to transfer our branching random walks with a random environment in location to branching random walks with a random environment in time, by use of Bramson's "branching processes within a branching process" (1978).
引用
收藏
页码:839 / 860
页数:22
相关论文
共 50 条
  • [1] Limit theorems for a branching random walk in a random or varying environment
    Huang, Chunmao
    Liu, Quansheng
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 172
  • [2] Limit theorems for the minimal position in a branching random walk with independent logconcave displacements
    Bachmann, M
    [J]. ADVANCES IN APPLIED PROBABILITY, 2000, 32 (01) : 159 - 176
  • [3] CENTRAL LIMIT THEOREMS FOR A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    高志强
    刘全升
    汪和松
    [J]. Acta Mathematica Scientia, 2014, 34 (02) : 501 - 512
  • [4] CENTRAL LIMIT THEOREMS FOR A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    Gao, Zhiqiang
    Liu, Quansheng
    Wang, Hesong
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (02) : 501 - 512
  • [5] Exact convergence rates in central limit theorems for a branching random walk with a random environment in time
    Gao, Zhiqiang
    Liu, Quansheng
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (09) : 2634 - 2664
  • [6] Limit theorems for a minimal random walk model
    Coletti, Cristian F.
    Gava, Renato J.
    de Lima, Lucas R.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [7] Minimal Position of Branching Random Walks in Random Environment
    Nakashima, Makoto
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (04) : 1181 - 1217
  • [8] Minimal Position of Branching Random Walks in Random Environment
    Makoto Nakashima
    [J]. Journal of Theoretical Probability, 2013, 26 : 1181 - 1217
  • [9] Limit Theorems for Local Particle Numbers in Branching Random Walk
    Bulinskaya, E. Vl
    [J]. DOKLADY MATHEMATICS, 2012, 85 (03) : 403 - 405
  • [10] Weak quenched limit theorems for a random walk in a sparse random environment
    Buraczewski, Dariusz
    Dyszewski, Piotr
    Kolodziejska, Alicja
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29