Enhancing the electrocatalytic activity of 2D micro-assembly Co3O4 nanosheets for Li-O2 batteries by tuning oxygen vacancies and Co3+/Co2+ ratio

被引:38
|
作者
Hou, Yue [1 ,2 ]
Hou, Chuanxin [2 ]
Zhai, Yanjie [2 ]
Li, Hongyu [2 ]
Chen, Tingting [3 ]
Fan, Yuqi [1 ]
Wang, Hongchao [3 ]
Wang, Weiliang [1 ]
机构
[1] Shandong Normal Univ, Inst Environm & Ecol, Jinan 250014, Shandong, Peoples R China
[2] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China
[3] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Micro-assembly Co3O4 nanosheets; Li-O-2; batteries; Deep discharge; BIFUNCTIONAL CATALYST; HIGHLY EFFICIENT; AIR BATTERIES; CATHODE; GRAPHENE; DEFECTS; CARBON; PERFORMANCE; MORPHOLOGY; NOBLE;
D O I
10.1016/j.electacta.2019.134884
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The Li-O-2 batteries (LOBS) have arouse worldwide interests due to their superior energy density and environmental sustainability. The researches on Li-O-2 battery electrocatalysts can contribute to the development of Li-O-2 batteries. Among various catalysts, Co3O4 has arouse some interests owing to its high abundance, low cost and bifunctional activity. In this study, a vacancy engineering method was adopted to tune the contents of oxygen vacancy and metal ion vacancy in 2D micro-assembly Co3O4 nanosheets through changing annealing temperature. The synergistic effects of mesoporous morphology, oxygen vacancy and higher Co3+ content induce the best cycle performances of the Li-O-2 cell, because structural defects can create a pathway for O-2 to enter the interior of the 2D micro-assembly Co3O4 nanosheets, serve as active sites and thus accelerate ORR, and the diffusion of oxygen and electrolyte can be assisted by mesopores in Co3O4 nanosheets to prevent channel clogging by discharge products and facilitate rapid mass of oxygen and lithium ions, and the large surface area of nanosheets can accommodate substantial discharge products. This work offers new horizons in the consideration and design of transition-metal oxides as cathode materials for LOBs. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Hierarchical porous Co3O4 films as cathode catalysts of rechargeable Li-O2 batteries
    Zhao, Guangyu
    Xu, Zhanming
    Sun, Kening
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (41) : 12862 - 12867
  • [22] Mechanism of Co3O4/graphene catalytic activity in Li-O2 batteries using carbonate based electrolytes
    Lim, Hee-Dae
    Gwon, Hyeokjo
    Kim, Haegyeom
    Kim, Sung-Wook
    Yoon, Taeho
    Choi, Jang Wook
    Oh, Seung M.
    Kang, Kisuk
    ELECTROCHIMICA ACTA, 2013, 90 : 63 - 70
  • [23] Unraveling the Catalytic Mechanism of Co3O4 for the Oxygen Evolution Reaction in a Li-O2 Battery
    Zhu, Jinzhen
    Ren, Xiaodong
    Liu, Jianjun
    Zhang, Wenqing
    Wen, Zhaoyin
    ACS CATALYSIS, 2015, 5 (01): : 73 - 81
  • [24] Enhancing Catalytic CO Oxidation over Co3O4 Nanowires by Substituting Co2+ with Cu2+
    Zhou, Minjie
    Cai, Lili
    Bajdich, Michal
    Garcia-Melchor, Max
    Li, Hong
    He, Jiajun
    Wilcox, Jennifer
    Wu, Weidong
    Vojvodic, Aleksandra
    Zheng, Xiaolin
    ACS CATALYSIS, 2015, 5 (08): : 4485 - 4491
  • [25] Mesoporous Pd/Co3O4 nanosheets nanoarrays as an efficient binder/carbon free cathode for rechargeable Li-O2 batteries
    Ren, Yanbiao
    Zhang, Shichao
    Li, Honglei
    Wei, Xin
    Xing, Yanlan
    APPLIED SURFACE SCIENCE, 2017, 420 : 222 - 232
  • [26] Co3O4-Catalyzed LiOH Chemistry in Li-O2 Batteries
    Lu, Jingyu
    Dey, Sunita
    Temprano, Israel
    Jin, Yanting
    Xu, Chao
    Shao, Yuanlong
    Grey, Clare P.
    ACS ENERGY LETTERS, 2020, 5 (12): : 3681 - 3691
  • [27] Boosting Electrocatalytic Reduction of Nitrate to Ammonia over Co3O4 Nanosheets with Oxygen Vacancies
    Wu, Xing
    Liu, Zhigong
    Gao, Tianyu
    Li, Zhizhuo
    Song, Zhenhui
    Tang, Jia
    Feng, Fan
    Qu, Caiyan
    Yao, Fubing
    Tang, Chongjian
    METALS, 2023, 13 (04)
  • [28] Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries
    Su, Dawei
    Dou, Shixue
    Wang, Guoxiu
    SCIENTIFIC REPORTS, 2014, 4
  • [29] Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries
    Dawei Su
    Shixue Dou
    Guoxiu Wang
    Scientific Reports, 4
  • [30] Interfacial Engineering of Co3O4/Fe2O3 Nano-Heterostructure Toward Superior Li-O2 Batteries
    Zhao, Yajun
    Tang, Wenhao
    Liu, Wenhong
    Kong, Xianghua
    Zhang, Dawei
    Luo, Hao
    Teng, Kewei
    Liu, Ruiping
    SMALL, 2023, 19 (03)