Plane Graphs with Parity Constraints

被引:0
|
作者
Aichholzer, Oswin [1 ]
Hackl, Thomas [1 ]
Hoffmann, Michael [2 ]
Pilz, Alexander [1 ]
Rote, Guenter [3 ]
Speckmann, Bettina [4 ]
Vogtenhuber, Birgit [1 ]
机构
[1] Graz Univ Technol, Inst Software Technol, A-8010 Graz, Austria
[2] ETH, Inst Theoret Comp Sci, Zurich, Switzerland
[3] Free Univ Berlin, Inst Informat, Berlin, Germany
[4] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands
来源
ALGORITHMS AND DATA STRUCTURES | 2009年 / 5664卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a set of n points in general position in the plane. Together with S we are given a set of parity constraints, that is, every point of S is labeled either even or odd. A graph G on S satisfies the parity constraint of a point p is an element of S, if the parity of the degree of p in G matches its label. In this paper we study how well various classes of planar graphs can satisfy arbitrary parity constraints. Specifically, we show that we can always find a plane tree, a two-connected outerplanar graph, or a pointed pseudo-triangulation which satisfy all but at most three parity constraints. With triangulations we can satisfy about 2/3 of all parity constraints. In contrast, for a given simple polygon H with polygonal holes on S, we show that it is NP-complete to decide whether there exists a triangulation of H that satisfies all parity constraints.
引用
收藏
页码:13 / +
页数:2
相关论文
共 50 条
  • [21] Parity Equivalence in Eulerian Graphs
    Dept. Mathematiques de Statistique, Université de Montréal, Succ. Centre-Ville, Montréal, Que. H3C 3J7, Canada
    J. Graph Theory, 3 (249-256):
  • [22] PARALLEL ALGORITHMS FOR PARITY GRAPHS
    PRZYTYCKA, T
    CORNEIL, DG
    JOURNAL OF ALGORITHMS, 1991, 12 (01) : 96 - 109
  • [23] Highly parity linked graphs
    Kawarabayashi, Ken-Ichi
    Reed, Bruce
    COMBINATORICA, 2009, 29 (02) : 215 - 225
  • [24] Parity Games on Temporal Graphs
    Austin, Pete
    Bose, Sougata
    Totzke, Patrick
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, PT I, FOSSACS 2024, 2024, 14574 : 79 - 98
  • [25] Random Graphs and the Parity Quantifier
    Kolaitis, Phokion G.
    Kopparty, Swastik
    JOURNAL OF THE ACM, 2013, 60 (05)
  • [26] Parity problems in planar graphs
    Braverman, Mark
    Kulkarni, Raghav
    Roy, Sambuddha
    TWENTY-SECOND ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2007, : 222 - +
  • [27] STABLE SET BONDING IN PERFECT GRAPHS AND PARITY GRAPHS
    CORNEIL, DG
    FONLUPT, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 59 (01) : 1 - 14
  • [28] OPPOSITION GRAPHS ARE STRICT QUASI-PARITY GRAPHS
    HOANG, CT
    MAFFRAY, F
    GRAPHS AND COMBINATORICS, 1989, 5 (01) : 83 - 85
  • [29] PARITY CONSTRAINTS IN VENEZIANO MODEL
    FREUND, PGO
    SCHONBERG, E
    PHYSICS LETTERS B, 1969, B 28 (09) : 600 - +
  • [30] PARITY CONSTRAINTS ON REACTION AMPLITUDES
    FREUND, PGO
    SCHONBERG, E
    WALTZ, R
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 63 (02): : 447 - +