On the Convergence of the q-Bernstein Polynomials for Power Functions

被引:0
|
作者
Ostrovska, Sofiya [1 ]
Ozban, Ahmet Yasar [2 ,3 ]
机构
[1] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
[2] Cankiri Karatekin Univ, Dept Math, TR-18100 Cankiri, Turkey
[3] OSYM Baskanligi, TR-06800 Ankara, Turkey
关键词
q-integer; q-Bernstein polynomial; Power function; Convergence;
D O I
10.1007/s00009-021-01756-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present new results related to the convergence of the sequence of the complex q-Bernstein polynomials {B-n,B-q(f(alpha); z)}, where 0 < q not equal 1 and f(alpha) = x(alpha), alpha >= 0, is a power function on [0, 1]. This study makes it possible to describe all feasible sets of convergence K for such polynomials. Specifically, if either 0 < q < 1 or alpha is an element of N-0, then K = C, otherwise K = {0} boolean OR {q(-j)}(j=0)(infinity). In the latter case, this identifies the sequence K = {0} boolean OR {q(-j)}(j=0)(infinity) as the 'minimal' set of convergence for polynomials B-n,B-q(f; z), f is an element of C[0, 1] in the case q > 1. In addition, the asymptotic behavior of the polynomials {B-n,B-q(f(alpha); z)}, with q > 1 has been investigated and the obtained results are illustrated by numerical examples.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Generalized Voronovskaja theorem for q-Bernstein polynomials
    Finta, Zoltan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 : 619 - 627
  • [32] q-BERNSTEIN POLYNOMIALS ASSOCIATED WITH q-GENOCCHI NUMBERS AND POLYNOMIALS
    Rim, Seog-Hoon
    Jeong, Joo-Hee
    Lee, Sun-Jung
    Jin, Jeong-Hee
    Moon, Eun-Jung
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (06) : 1006 - 1013
  • [33] Approximation by Quaternion q-Bernstein Polynomials, q > 1
    Sorin G. Gal
    [J]. Advances in Applied Clifford Algebras, 2012, 22 : 313 - 319
  • [34] The approximation by q-Bernstein polynomials in the case q ↓ 1
    Ostrovska, S
    [J]. ARCHIV DER MATHEMATIK, 2006, 86 (03) : 282 - 288
  • [35] Approximation properties for generalized q-Bernstein polynomials
    Nowak, Grzegorz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) : 50 - 55
  • [36] Q-Bernstein polynomials and Bézier curves
    [J]. Oruç, H. (halil.oruc@deu.edu.tr), 1600, Elsevier (151):
  • [37] ON THE EXTENDED KIM'S q-BERNSTEIN POLYNOMIALS
    Rim, S. -H.
    Jang, L. C.
    Choi, J.
    Kim, Y. H.
    Lee, B.
    Kim, T.
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (02) : 282 - 295
  • [38] GENERATING FUNCTIONS FOR THE q-BERNSTEIN BASES
    Goldman, Ron
    Simeonov, Plamen
    Simsek, Yilmaz
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1009 - 1025
  • [39] A NOTE ON THE q-BERNOULLI NUMBERS AND q-BERNSTEIN POLYNOMIALS
    Park, Jin-Woo
    Pak, Hong Kyung
    Rim, Seog-Hoon
    Kim, Taekyun
    Lee, Sang-Hun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (04) : 722 - 729
  • [40] A NOTE ON q-BERNOULLI NUMBERS AND q-BERNSTEIN POLYNOMIALS
    Kim, Taekyun
    Ryoo, Cheon Seoung
    Yi, Heungsu
    [J]. ARS COMBINATORIA, 2012, 104 : 437 - 447