Oligonucleotide microarray identification of Bacillus anthracis strains using support vector machines

被引:13
|
作者
Doran, M. [1 ]
Raicu, D. S.
Furst, J. D.
Settimi, R.
Schipma, M.
Chandler, D. P.
机构
[1] Depaul Univ, Intelligent Multimedia Proc Lab, Sch Comp Sci Telecommun & Informat Syst, Chicago, IL 60604 USA
[2] Argonne Natl Lab, Chicago, IL USA
关键词
D O I
10.1093/bioinformatics/btl626
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The capability of a custom microarray to discriminate between closely related DNA samples is demonstrated using a set of Bacillus anthracis strains. The microarray was developed as a universal fingerprint device consisting of 390 genome-independent 9mer probes. The genomes of B.anthracis strains are monomorphic and therefore, typically difficult to distinguish using conventional molecular biology tools or microarray data clustering techniques. Using support vector machines (SVMs) as a supervised learning technique, we show that a low-density fingerprint microarray contains enough information to discriminate between B.anthracis strains with 90% sensitivity using a reference library constructed from six replicate arrays and three replicates for new isolates. Contact: doran_michael@msn.com
引用
收藏
页码:487 / 492
页数:6
相关论文
共 50 条
  • [41] Identification of the pXO1 plasmid in attenuated Bacillus anthracis vaccine strains
    Liang, Xudong
    Zhang, Huijuan
    Zhang, Enmin
    Wei, Jianchun
    Li, Wei
    Wang, Bingxiang
    Dong, Shulin
    Zhu, Jin
    VIRULENCE, 2016, 7 (05) : 578 - 586
  • [42] Several Bacillus anthracis strains identification through real time PCR technique
    Bicheru, Simona
    Necsulescu, Marius
    Vladimirescu, Alexandru
    Lupescu, Cornelia
    Popescu, Diana
    Ordeanu, Viorel
    Dumitrescu, Gabriela
    ROMANIAN JOURNAL OF MILITARY MEDICINE, 2011, 114 (03) : 55 - 60
  • [43] Forest classification trees and forest support vector machines algorithms: Demonstration using microarray data
    Zintzaras, Elias
    Kowald, Axel
    COMPUTERS IN BIOLOGY AND MEDICINE, 2010, 40 (05) : 519 - 524
  • [44] Classification of Serous Ovarian Tumors Based on Microarray Data Using Multicategory Support Vector Machines
    Park, Jee Soo
    Choi, Soo Beom
    Chung, Jai Won
    Kim, Sung Woo
    Kim, Deok Won
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 3430 - 3433
  • [45] Knowledge-based analysis of microarray gene expression data by using support vector machines
    Brown, MPS
    Grundy, WN
    Lin, D
    Cristianini, N
    Sugnet, CW
    Furey, TS
    Ares, M
    Haussler, D
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) : 262 - 267
  • [46] Combining One-Class Support Vector Machines for Microarray Classification
    Krawczyk, Bartosz
    2013 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2013, : 83 - 89
  • [47] Transductive Support Vector Machines for classification of microarray gene expression data
    Semolini, R
    Von Zuben, FJ
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 2946 - 2951
  • [48] Hybrid huberized support vector machines for microarray classification and gene selection
    Wang, Li
    Zhu, Ji
    Zou, Hui
    BIOINFORMATICS, 2008, 24 (03) : 412 - 419
  • [49] Beamforming using support vector machines
    Ramón, MM
    Xu, N
    Christodoulou, CG
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2005, 4 : 439 - 442
  • [50] Classification and biomarker identification using gene network modules and support vector machines
    Yousef, Malik
    Ketany, Mohamed
    Manevitz, Larry
    Showe, Louise C.
    Showe, Michael K.
    BMC BIOINFORMATICS, 2009, 10