Fractional supersymmetric quantum mechanics

被引:0
|
作者
Daoud, M
Kibler, M
机构
[1] Univ Ibn Zohr, Fac Sci, Phys Mat Condensee Lab, Agadir, Morocco
[2] Univ Lyon 1, F-69622 Villeurbanne, France
[3] CNRS, IN2P3, Inst Phys Nucl, F-69622 Villeurbanne, France
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, two approaches of N = 2 fractional supersymmetric quantum mechanics of order k are studied in a complementary way. The first one, based on a generalized Weyl-Heisenberg algebra W-k, (that comprizes the affine quantum algebra U-q(sl(2)) with q(k) = 1 as a special case), apparently contains solely one bosonic degree of freedom. The second one uses generalized bosonic and k-fermionic degrees of freedom. As an illustration, particular emphasis is put on the fractional supersymmetric oscillator of order k.
引用
收藏
页码:S43 / S51
页数:9
相关论文
共 50 条
  • [21] Reducibility of supersymmetric quantum mechanics
    Jules Beckers
    Nathalie Debergh
    Anatolia G. Nikitin
    International Journal of Theoretical Physics, 1997, 36 : 1991 - 2003
  • [22] Supersymmetric relativistic quantum mechanics
    Habara, Y
    Nielsen, HB
    Ninomiya, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (06): : 1333 - 1340
  • [23] Supersymmetric Quantum Mechanics and Paraquantization
    Morchedi, O.
    Mebarki, N.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 304 - 309
  • [24] Duality and supersymmetric quantum mechanics
    Simon, DS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (18): : 4143 - 4150
  • [25] Progress in supersymmetric quantum mechanics
    Aref'eva, I
    Fernández, DJ
    Hussin, V
    Negro, J
    Nieto, LM
    Samsonov, BF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43):
  • [26] Can quantum mechanics and supersymmetric quantum mechanics be the multidimensional Ermakov theories?
    Kaushal, RS
    Parashar, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04): : 889 - 893
  • [27] 40 years of supersymmetric quantum mechanics
    Junker, Georg
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (02)
  • [28] Is supersymmetric quantum mechanics compatible with duality?
    Capdequi-Peyranère, M
    MODERN PHYSICS LETTERS A, 1999, 14 (38) : 2657 - 2666
  • [29] Painleve Equations and Supersymmetric Quantum mechanics
    Fernandez, David J. C.
    GEOMETRIC METHODS IN PHYSICS, 2016, : 213 - 231
  • [30] On supersymmetric quantum mechanics in curved spaces
    Debergh, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21): : 7427 - 7436