scMC learns biological variation through the alignment of multiple single-cell genomics datasets

被引:24
|
作者
Zhang, Lihua [1 ,2 ]
Nie, Qing [1 ,2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92697 USA
关键词
Single-cell genomics data; Data integration; Biological variation; Technical variation; Batch effect removal; EXPRESSION;
D O I
10.1186/s13059-020-02238-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Distinguishing biological from technical variation is crucial when integrating and comparing single-cell genomics datasets across different experiments. Existing methods lack the capability in explicitly distinguishing these two variations, often leading to the removal of both variations. Here, we present an integration method scMC to remove the technical variation while preserving the intrinsic biological variation. scMC learns biological variation via variance analysis to subtract technical variation inferred in an unsupervised manner. Application of scMC to both simulated and real datasets from single-cell RNA-seq and ATAC-seq experiments demonstrates its capability of detecting context-shared and context-specific biological signals via accurate alignment.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] scMC learns biological variation through the alignment of multiple single-cell genomics datasets
    Lihua Zhang
    Qing Nie
    Genome Biology, 22
  • [2] Integration of Single-Cell Genomics Datasets
    Adey, Andrew C.
    CELL, 2019, 177 (07) : 1677 - U23
  • [3] Alignment of Single-cell Datasets with the Hierarchical Cell Matching Algorithm
    Koca, Mehmet Burak
    Sevilgen, Fatih Erdogan
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [4] Single-cell genomics
    Clyde A Hutchison
    J Craig Venter
    Nature Biotechnology, 2006, 24 : 657 - 658
  • [5] Single-cell genomics
    Lange, BM
    CURRENT OPINION IN PLANT BIOLOGY, 2005, 8 (03) : 236 - 241
  • [6] Single-Cell Genomics
    Paolillo, Carmela
    Londin, Eric
    Fortina, Paolo
    CLINICAL CHEMISTRY, 2019, 65 (08) : 972 - 985
  • [7] Single-cell genomics
    Ochman, Howard
    ENVIRONMENTAL MICROBIOLOGY, 2007, 9 (01) : 7 - 7
  • [8] Single-cell genomics
    Hutchison, Clyde A., III
    Venter, J. Craig
    NATURE BIOTECHNOLOGY, 2006, 24 (06) : 657 - 658
  • [9] Single-cell genomics
    Kalisky, Tomer
    Quake, Stephen R.
    NATURE METHODS, 2011, 8 (04) : 311 - 314
  • [10] Single-cell genomics
    Tomer Kalisky
    Stephen R Quake
    Nature Methods, 2011, 8 : 311 - 314