Polarimetric scattering indexes and information entropy of the SAR imagery for surface classification

被引:0
|
作者
Jin, YQ [1 ]
Chen, F [1 ]
机构
[1] Fudan Univ, Ctr Wave Scattering & Remote Sensing, Shanghai 200433, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Mueller matrix solution and eigen-analysis of the coherency matrix for completely polarimetric scattering have been applied to analysis of the SAR (synthetic aperture radar) imagery. Usually, the polarization index is defined as a parameter to classify the difference between co-polarized scattering signatures from the terrain surfaces. In this paper, the eigen-values of the coherency matrix and information entropy are derived to directly relate with co-polarized and cross-polarized indexes. Thus, it combines the Mueller matrix simulation, the information entropy of the coherence matrix, and two polarization indexes to yield an overall theory for quantitative understanding of the SAR imagery. This theory is applied to the AirSAR images.
引用
收藏
页码:2708 / 2710
页数:3
相关论文
共 50 条
  • [31] Ocean surface wave measurements from fully polarimetric SAR imagery
    XIE Tao
    William PERRIE
    HE YiJun
    LI HaiYan
    FANG He
    ZHAO ShangZhuo
    YU WenJin
    [J]. Science China Earth Sciences, 2015, 58 (10) : 1849 - 1861
  • [32] Ocean surface wave measurements from fully polarimetric SAR imagery
    Tao Xie
    William Perrie
    YiJun He
    HaiYan Li
    He Fang
    ShangZhuo Zhao
    WenJin Yu
    [J]. Science China Earth Sciences, 2015, 58 : 1849 - 1861
  • [33] A Review of Crop Classification Using Satellite-Based Polarimetric SAR Imagery
    Sun, Zheng
    Wang, Di
    Zhong, Geji
    [J]. 2018 7TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2018, : 337 - 341
  • [34] Active extreme learning machines for quad-polarimetric SAR imagery classification
    Samat, Alim
    Gamba, Paolo
    Du, Peijun
    Luo, Jieqiong
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 35 : 305 - 319
  • [35] Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network
    Chen, KS
    Huang, WP
    Tsay, DH
    Amar, F
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (03): : 814 - 820
  • [36] Subaperture analysis of polarimetric SAR imagery
    Kelly, J.
    Ainsworth, T. L.
    Lee, J. -S.
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 5190 - 5193
  • [37] An Algorithm for Segmenting Polarimetric SAR Imagery
    Geaga, Jorge V.
    [J]. RADAR SENSOR TECHNOLOGY XIX; AND ACTIVE AND PASSIVE SIGNATURES VI, 2015, 9461
  • [38] CLASSIFICATION OF MULTI-LOOK POLARIMETRIC SAR IMAGERY AND POLARIZATION CHANNEL OPTIMIZATION
    Liu Guoqing Xiong Hong Huang Shunji A. Torre F. Rubertone(College of Electron. Eng.
    [J]. Journal of Electronics(China), 1998, (04) : 320 - 325
  • [39] Visual interpretation of polarimetric SAR imagery
    van den Broek, AC
    Smith, AJE
    Toet, A
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VII, 2002, 4541 : 169 - 179
  • [40] Polarimetric SAR urban classification using the Touzi target scattering decomposition
    Bhattacharya, A.
    Touzi, R.
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2011, 37 (04) : 323 - 332