Polarimetric scattering indexes and information entropy of the SAR imagery for surface classification

被引:0
|
作者
Jin, YQ [1 ]
Chen, F [1 ]
机构
[1] Fudan Univ, Ctr Wave Scattering & Remote Sensing, Shanghai 200433, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Mueller matrix solution and eigen-analysis of the coherency matrix for completely polarimetric scattering have been applied to analysis of the SAR (synthetic aperture radar) imagery. Usually, the polarization index is defined as a parameter to classify the difference between co-polarized scattering signatures from the terrain surfaces. In this paper, the eigen-values of the coherency matrix and information entropy are derived to directly relate with co-polarized and cross-polarized indexes. Thus, it combines the Mueller matrix simulation, the information entropy of the coherence matrix, and two polarization indexes to yield an overall theory for quantitative understanding of the SAR imagery. This theory is applied to the AirSAR images.
引用
收藏
页码:2708 / 2710
页数:3
相关论文
共 50 条
  • [1] Polarimetric scattering indexes and information entropy of the SAR imagery for surface monitoring
    Jin, YQ
    Chen, F
    [J]. MICROWAVE REMOTE SENSING OF THE ATMOSPHERE AND ENVIRONMENT III, 2003, 4894 : 495 - 502
  • [2] Polarimetric scattering indexes and information entropy of the SAR imagery for surface monitoring
    Jin, YQ
    Chen, F
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (11): : 2502 - 2506
  • [3] Applying maximum entropy methods to aid in classification of polarimetric SAR imagery
    Kouskoulas, Y
    Ulaby, FT
    Pierce, L
    Dobson, MC
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 2114 - 2116
  • [4] SUPERVISED CLASSIFICATION OF POLARIMETRIC SAR IMAGERY USING TEMPORAL AND CONTEXTUAL INFORMATION
    Dargahi, A.
    Maghsoudi, Y.
    Abkar, A. A.
    [J]. SMPR CONFERENCE 2013, 2013, 40-1-W3 : 107 - 110
  • [5] Unsupervised classification of SAR imagery using polarimetric decomposition to preserve scattering characteristics
    Marapareddy, Ramakalavathi
    Aanstoos, James V.
    Younan, Nicolas H.
    [J]. 2015 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2015,
  • [6] SUPERPIXEL-BASED CLASSIFICATION USING SEMANTIC INFORMATION FOR POLARIMETRIC SAR IMAGERY
    Yang, Shuai
    Zhang, Qianqian
    Yuan, Xiaohui
    Chen, Qihao
    Liu, Xiuguo
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3700 - 3703
  • [7] Iterative classification of polarimetric SAR image based on the Freeman decomposition and scattering entropy
    Zhao Li-Wen
    Zhou Xiao-Guang
    Jiang Yong-Mei
    Kuang Gang-Yao
    [J]. 2007 1ST ASIAN AND PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR PROCEEDINGS, 2007, : 473 - 476
  • [8] CROP CLASSIFICATION USING FULLY POLARIMETRIC SAR IMAGERY
    An, Gangqiang
    Xing, Minfeng
    Ni, Xiliang
    Zhou, Junjie
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7456 - 7459
  • [9] Coastal Zone Classification With Fully Polarimetric SAR Imagery
    Gou, Shuiping
    Li, Xiaofeng
    Yang, Xiaofeng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (11) : 1616 - 1620
  • [10] Relating polarimetric SAR image texture to the scattering entropy
    Fukuda, S
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2475 - 2478