The Maximal Lactate Steady State Workload Determines Individual Swimming Performance

被引:3
|
作者
Hering, Gernot O. [1 ]
Stepan, Jens [1 ,2 ]
机构
[1] Univ Konstanz, Dept Sport & Hlth Sci, Constance, Germany
[2] Paracelsus Med Univ, Dept Obstet & Gynaecol, Salzburg, Austria
来源
FRONTIERS IN PHYSIOLOGY | 2021年 / 12卷
关键词
lactate threshold; maximal lactate steady state; swimming; performance testing; exercise physiology; MUSCLE-FIBER TYPES; SKELETAL-MUSCLE; EXERCISE INTENSITY; ARM COORDINATION; FORCE PRODUCTION; ATP UTILIZATION; CALCIUM-UPTAKE; EFFICIENCY; THRESHOLD; KINETICS;
D O I
10.3389/fphys.2021.668123
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The lactate threshold (LT) and the strongly related maximal lactate steady state workload (MLSSW) are critical for physical endurance capacity and therefore of major interest in numerous sports. However, their relevance to individual swimming performance is not well understood. We used a custom-made visual light pacer for real-time speed modulation during front crawl to determine the LT and MLSSW in a single-exercise test. When approaching the LT, we found that minute variations in swimming speed had considerable effects on blood lactate concentration ([La-]). The LT was characterized by a sudden increase in [La-], while the MLSSW occurred after a subsequent workload reduction, as indicated by a rapid cessation of blood lactate accumulation. Determination of the MLSSW by this so-called "individual lactate threshold" (ILT)-test was highly reproducible and valid in a constant speed test. Mean swimming speed in 800 and 1,500 m competition (S-Comp) was 3.4% above MLSSW level and S-Comp, and the difference between S-Comp and the MLSSW (Delta S-Comp/MLSSW) were higher for long-distance swimmers (800-1,500 m) than for short- and middle-distance swimmers (50-400 m). Moreover, Delta S-Comp/MLSSW varied significantly between subjects and had a strong influence on overall swimming performance. Our results demonstrate that the MLSSW determines individual swimming performance, reflects endurance capacity in the sub- to supra-threshold range, and is therefore appropriate to adjust training intensity in moderate to severe domains of exercise.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Maximal lactate steady state in trained adolescent runners
    Almarwaey, OA
    Jones, AM
    Tolfrey, K
    JOURNAL OF SPORTS SCIENCES, 2004, 22 (02) : 215 - 225
  • [42] Estimation of the maximal lactate steady state in postmenopausal women
    Gil-Rey, E.
    Maldonado-Martin, S.
    Palacios-Samper, N.
    Gorostiaga, E. M.
    JOURNAL OF SPORTS SCIENCES, 2019, 37 (15) : 1725 - 1733
  • [43] Predicting Maximal Lactate Steady State in Children and Adults
    Beneke, Ralph
    Heck, Hermann
    Hebestreit, Helge
    Leithaeuser, Renate M.
    PEDIATRIC EXERCISE SCIENCE, 2009, 21 (04) : 493 - 505
  • [44] The maximal lactate steady state in elite endurance athletes
    Hoogeveen, AR
    Hoogsteen, J
    Schep, G
    JAPANESE JOURNAL OF PHYSIOLOGY, 1997, 47 (05): : 481 - 485
  • [45] Maximal Lactate Steady-State Prediction Reply
    Faude, Oliver
    Kindermann, Wilfried
    Meyer, Tim
    SPORTS MEDICINE, 2010, 40 (02) : 180 - 182
  • [46] Estimation of the Maximal Lactate Steady State in Endurance Runners
    Llodio, I.
    Gorostiaga, E. M.
    Garcia-Tabar, I.
    Granados, C.
    Sanchez-Medina, L.
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 2016, 37 (07) : 539 - 546
  • [47] Oxygen uptake kinetics and energy system's contribution around maximal lactate steady state swimming intensity
    Pelarigo, Jailton Gregorio
    Machado, Leandro
    Fernandes, Ricardo Jorge
    Greco, Camila Coelho
    Vilas-Boas, Joao Paulo
    PLOS ONE, 2017, 12 (02):
  • [48] Reverse lactate threshold test accurately predicts maximal lactate steady state and 5 km performance in running
    Wahl, Patrick
    Manunzio, Christian
    Zwingmann, Lukas
    van de Weyer, Stefan
    Bloch, Wilhelm
    BIOLOGY OF SPORT, 2021, 38 (02) : 285 - 290
  • [49] Lack of concordance amongst measurements of individual anaerobic threshold and maximal lactate steady state on a cycle ergometer
    Arratibel-Imaz, Inaki
    Calleja-Gonzalez, Julio
    Emparanza, Jose Ignacio
    Terrados, Nicolas
    Mjaanes, Jeffrey M.
    Ostojic, Sergej M.
    PHYSICIAN AND SPORTSMEDICINE, 2016, 44 (01): : 34 - 45
  • [50] Comparison of Selected Lactate Threshold Parameters with Maximal Lactate Steady State in Cycling
    Hauser, T.
    Adam, J.
    Schulz, H.
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 2014, 35 (06) : 517 - 521