Modelling configurational entropy of silicate melts

被引:15
|
作者
Russell, J. K. [1 ]
Giordano, D. [2 ]
机构
[1] Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC V6T 1Z4, Canada
[2] Univ Torino, Earth Sci Dept, Via Valperga Caluso 35, I-10125 Turin, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
Silicate-melts; Adam-Gibbs; Viscosity; Configurationalproperties; Entropy; Heat capacity; GLASS-FORMING LIQUIDS; HEAT-CAPACITY; STRUCTURAL RELAXATION; VISCOSITY; RHEOLOGY; TRANSITION; DEPENDENCE; FRAGILITY; POLYMERS; KINETICS;
D O I
10.1016/j.chemgeo.2016.07.019
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Adam-Gibbs theory provides a robust connection between the transport or relaxation properties of melts and their thermochemical properties. In its expanded form: log eta = A + B/T[S-c(Tg) + Cp-c in (T/T-g)] the equation has adjustable unknown parameters A, B and Sc (Tg) which can be estimated from experimental estimates of configurational heat capacity (Cp-c), glass transition temperature (Tg) and viscosity (eta). Here, we use recently published datasets for anhydrous and hydrous silicate melts and glasses (N similar to 50) for which there are measurements of log eta and calorimetric measurements of Cp-c and Tg. Our fitting strategy follows the approach developed by previous workers with the sole exception that we assume all silicate melts converge to a common, but unknown, high temperature limit to melt viscosity (e.g., A = log eta(infinity)). Our optimal value forA is -3.51 +/- 0.25. A consequence of a common, high-temperature limit to silicate melt viscosity is that the corresponding model values of glass transition temperature (Tg(12)), melt fragility (m), and the ratio Cp-c/S-c are constrained to lie on a single plane approximated as: Cp-c/S-c = Tg(12)/243399 - m/15.518 + 0.996 thereby establishing a quantitative connection between calorimetric and rheological measurements. Lastly, we show a good correspondence between values of Tg(12) and fragility (m) from this Adam-Gibbs based model of melt viscosity and values predicted by the GRD viscosity model for multicomponent silicate melts (cf. Giordano et al., 2008). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 151
页数:12
相关论文
共 50 条
  • [31] Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts
    Moretti, R
    ANNALS OF GEOPHYSICS, 2005, 48 (4-5) : 583 - 608
  • [32] Modelling the non-Arrhenian rheology of silicate melts: Numerical considerations
    Russell, JK
    Giordano, D
    Dingwell, DB
    Hess, KU
    EUROPEAN JOURNAL OF MINERALOGY, 2002, 14 (02) : 417 - 427
  • [33] Viscosity, fragility, and configurational entropy of melts along the join SiO2-NaAlSiO4
    Toplis, MJ
    Dingwell, DB
    Hess, KU
    Lenci, T
    AMERICAN MINERALOGIST, 1997, 82 (9-10) : 979 - 990
  • [34] The viscosity of planetary tholeiitic melts: A configurational entropy model (vol 191, pg 277, 2016)
    Sehlke, Alexander
    Whittington, Alan G.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2017, 197 : 474 - 475
  • [35] The viscosity of hydrous NaAlSi3O8 and granitic melts: Configurational entropy models
    Whittington, Alan G.
    Bouhifd, M. Ali
    Richet, Pascal
    AMERICAN MINERALOGIST, 2009, 94 (01) : 1 - 16
  • [36] CONFIGURATIONAL ENTROPY OF SUPERHELICES
    JACOBSON, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1969, (SEP): : BI13 - &
  • [37] Configurational entropy revisited
    Lambert, Frank L.
    JOURNAL OF CHEMICAL EDUCATION, 2007, 84 (09) : 1548 - 1550
  • [38] CONFIGURATIONAL ENTROPY OF POLYETHYLENE
    RIANDE, E
    FATOU, JG
    ANALES DE QUIMICA-INTERNATIONAL EDITION, 1971, 67 (7-8): : 775 - &
  • [39] SILICATE ANIONS IN ALKALI SILICATE MELTS
    BERTLINGKAMPF, E
    HEIMANN, M
    KLEIBRINK, R
    MARSMANN, HC
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1993, 619 (09): : 1639 - 1645
  • [40] The configurational entropy of glass
    Gupta, Prabhat K.
    Mauro, John C.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2009, 355 (10-12) : 595 - 599