Development and Validation of the Quantum Mechanical Bespoke Protein Force Field

被引:17
|
作者
Allen, Alice E. A. [1 ]
Robertson, Michael J. [2 ,3 ]
Payne, Michael C. [1 ]
Cole, Daniel J. [4 ]
机构
[1] Cavendish Lab, TCM Grp, 19 JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Stanford Univ, Sch Med, Dept Mol & Cellular Physiol, 279 Campus Dr, Stanford, CA 94305 USA
[3] Stanford Univ, Sch Med, Dept Biol Struct, 279 Campus Dr, Stanford, CA 94305 USA
[4] Newcastle Univ, Sch Nat & Environm Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
来源
ACS OMEGA | 2019年 / 4卷 / 11期
基金
英国工程与自然科学研究理事会;
关键词
ATOMIC CHARGES; FREE-ENERGIES; DYNAMICS; PARAMETERIZATION; SIMULATION; ENERGETICS; MOLECULES; PEPTIDES; ACCURACY; BENZENE;
D O I
10.1021/acsomega.9b01769
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular mechanics force field parameters for macromolecules, such as proteins, are traditionally fit to reproduce experimental properties of small molecules, and thus, they neglect system-specific polarization. In this paper, we introduce a complete protein force field that is designed to be compatible with the quantum mechanical bespoke (QUBE) force field by deriving nonbonded parameters directly from the electron density of the specific protein under study. The main backbone and sidechain protein torsional parameters are rederived in this work by fitting to quantum mechanical dihedral scans for compatibility with QUBE nonbonded parameters. Software is provided for the preparation of QUBE input files. The accuracy of the new force field, and the derived torsional parameters, is tested by comparing the conformational preferences of a range of peptides and proteins with experimental measurements. Accurate backbone and sidechain conformations are obtained in molecular dynamics simulations of dipeptides, with NMR J coupling errors comparable to the widely used OPLS force field. In simulations of five folded proteins, the secondary structure is generally retained, and the NMR J coupling errors are similar to standard transferable force fields, although some loss of the experimental structure is observed in certain regions of the proteins. With several avenues for further development, the use of system-specific nonbonded force field parameters is a promising approach for next-generation simulations of biological molecules.
引用
收藏
页码:14537 / 14550
页数:14
相关论文
共 50 条
  • [11] Development of a polarizable protein force field.
    Friesner, RA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U280 - U280
  • [12] A QUANTUM-MECHANICAL SCALED FORCE-FIELD FOR TETRANITROMETHANE
    ARENAS, JF
    OTERO, JC
    SOTO, J
    JOURNAL OF MOLECULAR STRUCTURE, 1993, 298 : 191 - 198
  • [13] Toward a fully quantum mechanical force field for simulations of biocatalysis
    York, Darrin M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [14] Scaled quantum mechanical force field of dimethylpyrazines:: vibrational assignments
    Arenas, JF
    Centeno, SP
    López-Tocón, I
    Otero, JC
    JOURNAL OF MOLECULAR STRUCTURE, 2005, 744 : 289 - 293
  • [15] Quantum mechanical force field for water with explicit electronic polarization
    Han, Jaebeom
    Mazack, Michael J. M.
    Zhang, Peng
    Truhlar, Donald G.
    Gao, Jiali
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (05):
  • [16] Some aspects of scaling the molecular quantum mechanical force field
    Pupyshev, VI
    Stepanov, NF
    Krasnoshchiokov, SV
    DeMare, GR
    Panchenko, YN
    JOURNAL OF MOLECULAR STRUCTURE, 1996, 376 : 363 - 368
  • [17] Vibrational anharmonicity and scaling the quantum mechanical molecular force field
    Panchenko, YN
    Pupyshev, VI
    Bock, CW
    JOURNAL OF MOLECULAR STRUCTURE, 2000, 550 : 495 - 504
  • [18] Force field validation using protein side chain prediction
    Jacobson, MP
    Kaminski, GA
    Friesner, RA
    Rapp, CS
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (44): : 11673 - 11680
  • [19] Towards hybrid quantum mechanical/molecular mechanical simulations of Li and Na intercalation in graphite - force field development and DFTB parametrisation
    Purtscher, Felix R. S.
    Hofer, Thomas S.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (03) : 1729 - 1740
  • [20] Open Force Field BespokeFit: Automating Bespoke Torsion Parametrization at Scale
    Horton, Joshua T.
    Boothroyd, Simon
    Wagner, Jeffrey
    Mitchell, Joshua A.
    Gokey, Trevor
    Dotson, David L.
    Behara, Pavan Kumar
    Ramaswamy, Venkata Krishnan
    Mackey, Mark
    Chodera, John D.
    Anwar, Jamshed
    Mobley, David L.
    Cole, Daniel J.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (22) : 5622 - 5633